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1. INTRODUCTION 

 

1.1. Background 

 

The Southern African Development Community Groundwater Management Institute (SADC-GMI) 

is implementing the project: Assessment of Groundwater Resources Development Priority 

Intervention Areas in the SADC Region (SADC GMI-GDRI) which seeks to bring the role of 

groundwater in securing water supply during periods of droughts to the forefront and provide for 

proactive planning, recommendations and management of groundwater and surface water 

systems.  

 

The project is identifying areas that are prone to drought in the SADC region by revising the 

current Groundwater Drought Risk (GDR) map (SADC 2011, Villholth et al 2013) of the region and 

to move towards practical assessment of the water resources which can be quickly mobilised to 

support sustainable water supply investments in underserved areas (also referred to as 

population vulnerability hotspots) in the region.  

 

The overall objective of the study is to assess the groundwater resources and identify areas that 

are prone to groundwater drought in the SADC region. The task is to make use of the existing 

geospatial, hydrological and hydrogeological datasets and deliver a revised GDR map of the SADC 

region. The study will also perform practical assessment of the ground-water resources which can 

be quickly mobilised to support sustainable domestic water supply investments in areas with high 

groundwater drought risk and have limited access to safe domestic water supply - based on 

population vulnerability hotspots. The study will further identify the most adequate and cost-

effective infrastructure interventions in the areas in most need. 

 

1.1. Purpose of this Report  

 

This report presents the revised GDR map. Similar to deriving the SADC (2011) map, the GDR 

Mapping and Management System (GRiMMS) is derived, updated and depicts GDR map on the 

basis of relative indicators, using a composite mapping analysis technique in a traditional 

geographic information system (GIS) environment. Separate thematic layers showing different 

factors influencing GDR (through indicators given for the entire SADC region at a certain 

resolution) are superimposed and mathematically combined through a simple linear algorithm 

and an associated weighting scheme for the relative importance of the various factors to derive 

a spatially distributed measure of GDR across the SADC region (Villholth et al 2013). The revised 

GDR map incorporates updated datasets until 2019 at a resolution of 5 kilometres (km) (the 

meteorological parameters are at this resolution) and incorporates a groundwater storage 
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sensitivity module driven from Gravity Recovery and Climate Experiment (GRACE) satellite 

datasets.  
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2. GRIMMS METHOD 

 

The original GRiMMS algorithm is shown in Figure 2-1 and comprises four modules: 

 

1. Climate sensitivity 

2. Hydrogeological drought proneness 

3. Human groundwater drought vulnerability 

4. Groundwater threats 

 

 
 

Figure 2-1: Schematic diagram of the governing thematic layers entering the composite mapping analysis 
and resulting aggregated layers in the original GRiMMS (Villholth et al 2013) 

 

The original GRiMMS algorithm was modified to include the groundwater storage sensitivity 

derived from GRACE satellite data. The revised algorithm is shown in Figure 2-2 and associated 

datasets in Table 2-1. 
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Figure 2-2: Updated GRiMMS algorithm to incorporate the groundwater storage sensitivity derived from 
GRACE satellite data 

 

Table 2-1: The list of GRiMMS sub-modules and datasets 

 
Meteorological drought risk  

1 Rainfall amount Rainfall time-series   Climate Hazards Group InfraRed Precipitation with 

Station (CHIRPS) version 2 daily data (1981-2019) 

(~5km resolution) 

2  Coefficient of variation (CV) Rainfall time-series   Worldclim monthly data (1960-2019) (~21 km 

resolution) 

3  Number of consecutive dry days in one 

calendar year 

Rainfall time-series   CHIRPS version 2 daily data (1981-2019) (~5km 

resolution) 

4 Number of consecutive dry days in more 

than one calendar year  

Rainfall time-series   CHIRPS version 2 daily data (1981-2019) (~5km 

resolution) 

Aquifer productivity  

5  Aquifer type SADC geohydrology map  1:2.5 million scale vector map 

Groundwater recharge potential  

6  Slope  Derived from 90m STRM 90m resolution data 

7  Normalised Difference Vegetation Index  MODIS NDVI   ~1 km resolution (2003-2019) 

8  Rainfall  Mean annual rainfall  ~5 km resolution raster (1981-2019) 

Groundwater storage risk 

9 Percentage negative GRACE Groundwater 

Drought Index (GGDI) 

Derived from GRACE data ~5 km resolution raster 

10 Mean negative GGDI Derived from GRACE data ~5 km resolution raster 

11 Trend GGDI Derived from GRACE data ~5 km resolution raster 

Groundwater dependence  

12 Livestock density  Animals per km2  ~10 km resolution raster 

13 Irrigation density  Irrigation density  % per unit area irrigated by groundwater (~10km 

raster) 

14 Population density  People per km2  ~1 km resolution raster (2015) 

15 Distance to surface water Euclidean distance to 

rivers 

Vector data from SADC-GMI GIP 
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3. GIS COMPOSITE MAPPING METHOD 

 

The outline of the method used in a GIS software is as follows: 

 

• The vector data are converted to raster format at a suitable resolution 

• The raster layers are left in their native resolution, e.g. slope at 90m, rainfall datasets at 

~5km, livestock density at ~10km 

• All the datasets are classified into selected ranges and assigned values from 1 to 5, with 

1 indicating very low groundwater drought risk and 5 indicating very high groundwater 

drought risk 

• The raster layers are then multiplied by the assigned weights and added together to 

make the final map constituting each submodule or module 

 

3.1. Meteorological drought risk 

 

The World Meteorological Organization (WMO) published a list of extreme weather indices that 
have to be assessed in climate monitoring and prediction. WMO recommends analysis over at 
least a 30-year period as that indicates the “average weather” and typical behaviour. WMO (2015) 
defines meteorological drought as “atmospheric conditions resulting in the absence or reduction 
of precipitation over a period of time”. Drought typically begins as a dry spell—a period of 
abnormally dry weather; however, the conditions are less severe than those of the actual drought. 
In this study, the datasets in  

Table 3-1 are combined into one index that constitutes meteorological drought risk. These are 

based on the WMO defined set of core descriptive indices of climate extremes: 

 

Rainfall amount- this is used to map dry areas with areas receiving average daily rainfall 

lower than 1 millimetre per day (mm/day) over the time-series being classified as dry ( 
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• Figure 3-1) 

Rainfall variability - coefficient of variation of rainfall; which is calculated by dividing the 

standard deviation of monthly rainfall by the mean monthly rainfall, the higher the 

coefficient of variation (CV), the more variable the year-to-year (i.e. inter-annual) rainfall 
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of a locality is the higher the drought risk (

 
 

• Figure 3-2)  
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The number of consecutive dry days- days during which the precipitation was below 1 mm/day 

in one calendar year (

 
 

• Figure 3-3) 
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• The number of consecutive dry days or days during which the precipitation was below 

1 mm/day over more than one calendar years (to cater for extended dry months) (Figure 

3-4) 

 
Table 3-1: Meteorological risk parameters, the ranges and the reclassification values 

 
Parameter Ranges Reclassification values 

Rainfall amount (PANN) <1 1-Average rainfall value of grid point 

>1 0 

Coefficient of variation (PSTD) 0 % 0 

100 % 1 

0-100 Rescaled between 0 and 1 

Consecutive number of dry days in one calendar 

year (PDRS) 

  

<60 days 0 

>120 days 1 

60-120 days Rescaled between 0 and 1 

Consecutive number of days over more than one 

calendar year (PEXT) 

<150 days 0 

>270 days 1 

150-270 Rescaled between 0 and 1 
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Figure 3-1: The rainfall amount map showing a scale of 0 – 1, with 1 indicating areas of daily rainfall less 
than 1mm/day and therefore high groundwater drought risk areas 
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Figure 3-2: The SADC map showing the coefficient of variation of rainfall 
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Figure 3-3: Number of consecutive dry days in one calendar year  
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Figure 3-4: Number of consecutive dry days in more than one calendar year 

 

The equation used to calculate meteorological risk adapted from SADC (2011) is given below: 

 

Meteorological risk (M) = 5 *[0.4(PANN) + 0.15 (PDRS) +0.15 (PEXT) +0.3 (PSTD)] 
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Where 

 

PANN = rainfall amount, assigned the highest weight of 0.4 and has the most effect 

on drought 

PDRS = number of consecutive dry days in one calendar year, assigned the lowest 

weight of 0.15 

PEXT = number of consecutive dry days over more than one calendar year, 

assigned the lowest weight of 0.15 

PSTD =  rainfall coefficient of variation, assigned a moderate weight value of 0.3 

 

Sum of all weights = 0.4 + 0.15 + 0.15 + 0.3 =1 

 

A multiplication factor of 5 is used to scale the values between 0 and 5. The meteorological 

drought risk map is shown in Figure 3-5. 
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Figure 3-5: Meteorological drought risk map 

 

Another scenario was computed with all the parameters equally weighted. The effects of these 

results on the climate sensitivity map are discussed in Chapter 4.  
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3.2. Hydrogeological drought proneness 

 

The hydrogeological drought proneness module relates to the physical factors influencing 

drought conditions in groundwater systems. The aspects considered are (SADC 2011): 

 

• Aquifer productivity- made up of two parameters, aquifer storage capacity and aquifer 

permeability e.g. a deeper extensive and more productive aquifer will be less drought 

vulnerable than shallow aquifers 

• Groundwater recharge potential- areas of high groundwater recharge is less vulnerable 

to drought 

 

3.2.1. Aquifer productivity 

 

Aquifer productivity describes the potential of aquifers to sustain various levels of borehole water 

supply and the dominant groundwater flow types in each aquifer (Ó Dochartaigh et al 2011). 

Aquifer storage capacity and aquifer permeability are critical factors in determining aquifer 

productivity. Aquifer storage covers two aspects of groundwater: the volume of water in the 

porous system per volume of aquifer (storativity) and the physical extent of the aquifer. 

Permeability expresses the ease with which water flows in the porous system, and by inference, 

how much water can be extracted, for a certain power, within a certain time. A practical proxy for 

this is the well yield, which is expressed in litres per second (L/s) (SADC 2011).  

 

The aquifer types from the SADC Hydrogeology Map (SADC 2010) were used as the input data for 

aquifer productivity (Figure 3-6; Table 3-2). The map is used to replace both the aquifer 

permeability and aquifer storage capacity parameters. This is largely, because there are no 

comprehensive or adequate borehole data per country for the SADC region from which aquifer 

permeability or storage capacity values can be obtained. The use of the SADC geohydrology map 

aquifer type data is justified because of the way it was derived as it considered aquifer 

permeability, flow regimes (transmissivity) and productivity (SADC 2011). 

 

Table 3-2: Aquifer map classes 

 
Aquifer Reclassification value according to productivity 

Low permeability 1 

Karst 2 

Fissured 3 

Unconsolidated intergranular 4 

Multi-layered aquifer 5 (most productive=low drought risk) 
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3.2.2. Groundwater recharge potential 

 

Broadly, groundwater recharge can be defined as an addition of water to the saturated zone with 

four main modes of recharge distinguished: downward flow of water through the unsaturated 

zone reaching the water table; lateral and/or vertical inter-aquifer flow, induced recharge from 

nearby surface-water bodies resulting from groundwater abstraction, and artificial recharge such 

as from borehole injection or man-made infiltration ponds, dams, etc (Xu and Beekman 2019). 

The natural recharge by downward flow of water through the unsaturated zone is generally the 

most important mode of recharge in arid and semi-arid areas. In the GDR map compilation direct 

groundwater recharge is not calculated but rather a recharge potential map based of the 

following parameters: 

 

Rainfall: Rainfall is the most important factor of recharge as excessive amounts of surface 

water are stored and recharged during periods of intense rainfall ( 
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• Figure 3-7).  The gridded 5km resolution CHIRPS version 2 mean annual rainfall averaged 

of 39 years from 1981 to 2019 was used (Funk et al 2014). The classes of rainfall (Table 

3-3) used are based on various sources (National Park Service 2019, FAO 1989) 

Slope: Slope gradient influences the catchment configuration and thus influence runoff, 

ponding and the infiltration of surface water (Adams et al 2004). Low levels in recharge 
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occur on steep slopes as water flows rapidly downwards providing insufficient time to infiltrate 

and flat lands facilitate groundwater recharge due to retention of rainwater, providing 

moderate evaporation conditions (
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• Figure 3-8). Slope classification is adopted from the SOTER Classification (Table 3-3) 

which a standard way of classifying slope (Van Engelen and Dijkshoorn 2012, Mogaji et 

al 2015, da Costa et al 2019) 

• Vegetation (Normalized Difference Vegetation Index): NDVI derived from MODIS 

satellite imagery is used to quantify vegetation by measuring the difference between the 

near-infrared values (which vegetation strongly reflects) and red light (which vegetation 

absorbs). The values obtained are between -1 to +1 with higher values representing 

healthy vegetation and low values low or less vegetation (Figure 3-9; Table 3-3). The 

assumption is that good vegetation cover enhances infiltration and hence recharge, 

whereas poor vegetation cover impedes recharge and enhances surface runoff. Global 

gridded vegetation indices from MODIS are calculated at 16-day and monthly intervals 

and in this case monthly data at 1 km resolution from the MYD13A2 Version 6 product 

for the years 2002 to 2019 was averaged and used in the study (Didan et al 2015).  The 

NDVI classes used were based on various sources (SADC 2011, Aziz et al 2018, Aquino 

and Oliveira 2012) 
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Table 3-3: Groundwater recharge parameters and reclassification values 

 
Parameter Ranges Description  Values relating to groundwater recharge potential 

Mean annual 

rainfall (mm/year) 

0 - 100 Hyper arid 0 

100 - 250 Arid 1 

250 - 500 Semi-arid 2 

500 - 1000   3 

1000 - 1500   4 

>1500 Tropical moist 5 

Slope (degrees) 0 - 2 Flat 5 

2 -5 Gently undulating 4 

5 -7.5 Undulating 3 

7.5 - 10 Undulating- sloping 2 

>10 Strongly sloping to extremely 

steep 

1 

NDVI <0  Extreme drought 0 

0 - 0.2 Dry 1 

0.2 - 0.4 Dry-Moderate 2 

0.4 - 0.5 Moderate 3 

0.5 - 0.6 Wet 4 

>0.6 Extremely wet 5 
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Figure 3-6: The SADC aquifer type map and the values assigned to the different aquifer types 
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Figure 3-7: Mean annual rainfall classes and groundwater drought risk values assigned 
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Figure 3-8: The slope classes assigned values relating to the groundwater recharge potential 
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Figure 3-9: NDVI map showing the values assigned according to groundwater recharge potential 

 

The equation for the calculation of the groundwater potential map as adopted from SADC (2011) 

is as follows: 
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Groundwater recharge potential = 0.5 * Rainfall + 0.35 *NDVI + 0.15* Slope 

 

The groundwater recharge potential map is given in Figure 3-10. 

 

 
 

Figure 3-10: The groundwater recharge potential map based on the mean annual rainfall 
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A second scenario was computed with all parameters. i.e. slope, NDVI and rainfall equally 

weighted. The effects of these results on the groundwater recharge potential map are discussed 

in Chapter 4. 

 

3.2.2.1. Consideration of evapotranspiration in groundwater recharge potential  

 

The above approach oversimplifies groundwater recharge processes by generalizing relationships 

between climate and hydrological fluxes but remains the only viable option to simulate large scale 

processes due to long model running times and lack of data (Moeck et al 2020). The water 

availability on the surface for infiltration and the potential of the subsurface system to intake 

water are the two major controls on recharge (Mohan et al 2018). Evapotranspiration (ET) is a 

dominant component of the water balance and potential evaporation is much higher than rainfall 

in most areas throughout SADC. Moeck et al (2020) analysis of a global dataset of recharge rates 

and other global-scale datasets, such as climatic or soil-related parameters, using correlation 

analysis, showed that climatic forcing functions, particularly annual precipitation and seasonality 

in temperature and precipitation, are the most important predictor variables of groundwater 

recharge rates followed by soil and vegetation factors. In general, higher precipitation rates and 

stronger precipitation seasonality increase the potential for recharge by increasing the availability 

of water at the surface whilst, global variability in evapotranspiration has less of an effect on 

groundwater recharge.  

 

To take the evapotranspiration into account in the algorithm we used the aridity index (Table 3-4). 

The Global Aridity Index dataset is freely available at ~1 km resolution for the years 1970-2020 

(Trabucco and Zomer 2018). Aridity is usually expressed as a generalized function of precipitation, 

temperature and reference evapotranspiration (ET0). An Aridity Index (UNEP 1997) can be used 

to quantify precipitation availability over atmospheric water demand. The datasets are derived 

by dividing the mean annual precipitation with the mean annual reference evapotranspiration. 

The data is classified based on various sources (UNEP 1997, FAO 1993) (Figure 3-11). 

 

Table 3-4: The global aridity index and reclassification values 

 
Parameter Ranges Description  Values relating to groundwater recharge potential 

Global aridity 

Index (mm/year) 

<0.05 Hyper arid 0 

0.05 – 0.2 Arid 1 

0.2 -0.5 Semi-arid 2 

0.5-0.65  Dry sub-humid 3 

0.65-0.75  Humid 4 

>0.5 Hyper-humid 5 
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Figure 3-11: Global aridity index map 

 

A second groundwater recharge potential map was created by substituting the mean annual 

rainfall with the aridity index (Figure 3-12).  
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The equation for the calculation of the groundwater potential map as adopted from SADC (2011) 

is as follows: 

 

Groundwater recharge potential = 0.5 * Aridity index + 0.35 *NDVI + 0.15* Slope 
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Figure 3-12: The groundwater recharge potential map based on the aridity index 
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3.2.3. Calculation of hydrogeological drought proneness 

 

The equation for the calculation of the hydrogeological drought proneness is as follows: 

 

Hydrogeological drought proneness = 0.5 * Aquifer productivity + 0. 5 *Groundwater recharge 

potential 

 

The hydrogeological drought proneness map is given in Figure 3-13. 
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Figure 3-13: The hydrogeological drought proneness map based on the mean annual rainfall data 

 

Another hydrogeological drought proneness map was created based on the groundwater 

recharge potential map created using the aridity index. The results and comparisons of the two 

maps will be discussed in Chapter 4 using sensitivity analysis.  
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Figure 3-14: The hydrogeological drought proneness map based on the aridity index 
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3.3. Groundwater storage risk 

 

Satellite-based GRACE provides data and information of available terrestrial water storage 

anomalies and combining the soil moisture from Global Land Data Assimilation System (GLDAS) 

offers an approach to estimate groundwater storage changes for a region (Singh and Saravanan 

2020). Understanding groundwater storage changes is critical as groundwater storage represents 

a buffer for achieving groundwater resilience under extreme climate events e.g. extended 

drought conditions. A groundwater storage sensitivity module is incorporated in the GRiMMS 

algorithm using GRACE-derived groundwater storage anomalies by relating to the GRACE 

Groundwater Drought Index (GGDI).  

 

Box 3-1: GRACE Tellus mission 

 

The GRACE Tellus mission represents a breakthrough to measure and monitor changes in the Earth’s cryosphere, 

hydrosphere and oceanographic components1. The GRACE Tellus mission consists of twin satellites measuring 

changes in Earth’s gravity field. GRACE and GRACE-Follow On (FO) level - 1 instrument data is fed to three 

processing centres NASA’s Jet Propulsion Laboratory (JPL), GeoforschungsZentrum Potsdam (GFZ), and Center for 

Space Research at University of Texas (CSR). These three processing centres are the primary centres responsible 

for delivering GRACE level – 2 to level – 4 data products. These products include, monthly changes in terrestrial 

water storage, monthly ocean bottom pressure changes, monthly gravitation field anomalies, and much more, 

from land mass changes data (Wahr et al 1998). Each centre relies on various post-processing algorithms to derive 

monthly gravity field changes (Level – 2), which in turn are used to derive the above data products. The result is 

three different solutions for GRACE derived data products (Sakumura et al 2014). 

 

Thomas et al (2017) utilised GRACE-deficit analysis approach to characterize groundwater 

drought. In this case to characterise groundwater drought in the Central Valley, California due to 

anthropogenic effects and natural drought responses. Normalized GRACE-derived groundwater 

storage deviations were shown to quantify groundwater storage deficits during the GRACE record, 

which was defined as the GGDI. The GGDI is calculated by normalising the results of removing the 

monthly mean from each monthly observation. The GGDI provides a measure of the deviation in 

groundwater storage from normal conditions. Hence, negative GGDI indicate groundwater 

storage drought conditions, while positive GGDI indicate groundwater storage surplus conditions. 

The GGDI allow for the identification of groundwater storage drought event, intensity, duration 

and frequency (Thomas et al 2017).  

 

The GGDI is however, a timeseries analysis of GRACE derived groundwater storage anomalies. In 

this form it is not suited for incorporation in the GRiMMS algorithm, which is a composite mapping 

overlay analysis. Instead thematic layers representing spatial distributions are more appropriate. 

In this regard we extend the GGDI methodology by extracting a set of parameters from the GGDI 

 
1 https://grace.jpl.nasa.gov/ 
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timeseries, that can be used to explain the spatial distribution of the sensitivity of groundwater 

storage to drought so as to derive a groundwater storage risk. To do this a set of descriptive core 

indices are developed: 

 

• Percentage of the time –series in a groundwater storage drought – this is used as a 

proxy to explain duration of groundwater storage in deficit 

• Mean negative GGDI – is used to explain the mean intensity of groundwater storage 

deficit conditions 

• Trend GGDI – used to indicate changes in groundwater storage conditions 

 

3.3.1. Data 

 

3.3.1.1. GRACE derived terrestrial water storage (ΔTWS) 

 

At present, there are two major level - 1 GRACE post-processing products representing terrestrial 

water storage changes: 

 

1. spherical harmonics (SH) based solutions 

2. Mass concentration blocks (mascon) based solution 

 

Both versions where downloaded and used in the analysis of the GRACE data. The SH version rely 

on resolving earth gravity field using a set spherical harmonic (Stokes) coefficients at 

approximately monthly intervals, complete to degree and order 120 (Swenson and Wahr 2006, 

Swenson et al 2008). The mascon version depend on a surface spherical cap mascon based 

solution to directly estimate mass variations from the inter satellite range‐rate measurements 

(Watkins et al 2015). The SH version used are the Release 06 version 03 of GRACE and GRACE-FO 

Level – 3 monthly terrestrial water storage anomalies, from April 2002 – November 20192. The 

data are provided on a global 1ox1o grid with ocean signals masked. Optional land grid scaling 

factors have not yet been applied to the data. All three post-processing solutions are downloaded 

and the arithmetic mean of the three used for further analysis. The mascon version used in this 

application is the Release 06 version 02 of GRACE and GRACE-FO level – 3 monthly terrestrial 

water storage anomalies, for April 2002 – March 2020, from the Center for Space Research at 

University of Texas3 (Save et al 2016). The data are provided on a global 0.25ox0.25o grid, with 

ocean signals masked.  No optional gain factors need to be applied to this data. 

 

 
2 Available from https://podaac.jpl.nasa.gov/GRACE?sections=about%2Bdata 
3 (http://download.csr.utexas.edu/outgoing/grace/RL06_mascons/CSR_GRACE_GRACE-FO_RL06_Mascons_all-corrections_v02.nc 
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3.3.1.2. GLDAS NOAH-derived terrestrial water storage (TWS) 

 

The GRACE ΔTWS data detailed above include water storage in the entire terrestrial water column 

- water stored as groundwater, soil moisture, canopy water storage, snow-water storage and 

surface water bodies (Rodell et al 2007). To extract the groundwater signal, the various terrestrial 

water storage components must be removed from the grace signal (Rodell et al 2007). The GLDAS 

in combination with land surface modelling is designed to provide optimal fields of land surface 

fluxes, through using remote sensing and ground based observations (Rodell et al 2004). The 

GLDAS provide data on various land surface states such as evapotranspiration, soil moisture, land 

surface energy fluxes to name a few. There are 5 land-surface model derivatives of GLDAS, Noah, 

CLM, VIC, Mosaic, and Catchment land surface models. Together the various models provide data 

on land surface states as 1o or 0.25o gridded data products at 3 hourly, daily or monthly intervals 

from 1948 – present.  

 

Two different datasets are downloaded from the GLDAS NOAH model. Specifically, the first 

dataset (GLDAS TWS 1) monthly averages from April 2002 – March 2020 for soil moisture (SM), 

canopy water storage (CW), and snow water equivalent thickness (SWE), on 0.25ox0.25o grid, 

were extracted4. The second dataset (GLDAS TWS 2) presents already aggregated GLDAS NOAH 

terrestrial water storage anomalies. This dataset provides monthly observation at 1ox1o global 

grids and does not require additional processing5.  

 

3.3.1.3. Scaling factors 

 

Estimation of GRACE ΔTWS SH has noise and correlated errors. Various post-processing filters are 

applied during level – 1 processing to reduce or remove these errors. However, during this process 

some of the true geophysical signal, especially at finer spatial scales, is lost. Signal attenuation is 

necessary to ensure comparative analysis of GRACE derived hydrological data. The filtered GRACE 

data typically has a native resolution ~300km, which is far more course than complimentary 

datasets such as GLDAS NOAH TWS. When comparative analysis is performed without accounting 

for the signal loss during GRACE filtering, potential erroneous observations can be made. This 

mismatch in spatial scale can be accounted for by restoring the signal loss (Landerer and Swenson 

2012). Landerer and Swenson (2012) developed a method to calculate a set of scale factors, one 

for each grid cell, that can be used to restore the GRACE signal lost during post-processing 

(Landerer and Swenson 2012). 

 

 
4 https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS 
5 https://podaac-tools.jpl.nasa.gov/drive/files/allData/tellus/L3/gldas_monthly/netcd 
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A set of scale factors derived from National Centre for Atmospheric Research’s Community Land 

Model (NCAR CLM) version 4, based on Landerer and Swenson (2012) 6. The current release 

(Release 05) of this set of scale factors is package as a 1ox1o gridded latitude and longitude 

product, complimenting the GRACE gridded data product. This set of scale factors were computed 

for GRACE Release 05. However, the scale factors are independent of GRACE data proper, and 

only depend on the GRACE filters used. Considering that the spherical harmonic coefficients fields 

have changed based on the adoption of satellite laser ranging (Cheng and Tapley 2004) , the use 

of non-complementary scaling factors can introduce additional uncertainty into the model. 

Nonetheless, these are the only available scaling factors for the GRACE ΔTWS SH, and should 

dampen the signal loss to some degree, that accompanies the GRACE data processing.   

 

3.3.1.4. MODIS evapotranspiration data 

 

For the downscaling, the predictant variable was chosen as evapotranspiration. 

Evapotranspiration data from the Terra/MODIS mission, was collected. Specifically, data were 

extracted from the MOD16A2GF dataset. This dataset that has a temporal resolution of 8-days 

and spatial resolution of 500m, and contain layers for composited ET, LE, Potential ET (PET), and 

Potential LE (PLE). However, composited ET was used, which is a measurement of actual ET. The 

temporal coverage of the data collected was from April 2002 - to November 2019. The data is first 

converted to metres of equivalent water thickness, then aggregated into monthly cumulative ET, 

based on a 32-day month. Finally, a single month (May 2002), was used as a test sample, for 

further analysis. 

 

3.3.1.5. Groundwater level data 

 

Depth to groundwater level data were collected for various boreholes across the SADC region. In 

particular, the data cover localities in Botswana, Malawi, Mozambique, Namibia, and South Africa 

(Figure 3-15). Combined, there are over 2,500,000 groundwater level records in the dataset, 

following pre-processing of the raw data. This include data for a total of 4390 borehole across the 

region, with temporal range spanning 1936 to 2020. Groundwater level data are used to validate 

the GRACE GWS and the GGDI, by calculating correlation coefficients between monthly 

groundwater level values and the GGDI.  

 
6 Available from https://podaac-tools.jpl.nasa.gov/drive/files/allData/tellus/ retired/L3/grace/land_mass/RL05/netcdf 
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Figure 3-15: Groundwater level data points in SADC 

 

3.3.2. Pre-processing of data 

 

In the following sections the pre-processing steps that were carried out to transform the data for 

comparative analysis are discussed.  

 

3.3.2.1. Mascon data pre-processing 

 

Due to inconsistencies in satellite data collection, GRACE data typically has a number of missing 

observations in the time series. There are 216 months in the observation period (2002/04 - 

2020/03), while data exist for only 184 months. Gaps in the data where filled by substituting the 

monthly mean. Firstly, the observation where grouped according to calendar month, and the 
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mean for each group (calendar month) was calculated. These values were substituted for the 

corresponding missing months in the time series. Thereafter the data was clipped according to 

the outline of SADC region (Figure 3-16). 

 

 
 

Figure 3-16: Net ΔTWS according to GRACE ΔTWS Mascons 

 

3.3.2.2. Spherical harmonics data pre-processing  

 

For the GRACE ΔTWS SH the solutions from CSR and GFZ are presented with duplicate co-ordinate 

labels. Hence, these solutions had to be curated by removing the duplicate coordinate values. In 

addition, the time stamps for the CSR and GFZ solutions where different than the JPL solution. To 

reconcile this difference, the time stamps were all set according values in the JPL solution.  The 

arithmetic mean of the three solutions was calculated for use in the further analysis (Sakumura 

et al 2014). Exactly like the mascon version, this version also contains the same temporal data 
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gaps. Gaps in the data where filled by substituting the monthly mean. Firstly, the observation 

where grouped according to calendar month, and the mean for each group (calendar month) was 

calculated. These values were substituted for the corresponding missing months in the time 

series. Thereafter the data were descaled by applying the scaling factors described above. There 

is one scaling factor for each grid cell in the GRACE ΔTWS SH data. The same scaling factors is 

applicable to every time step, for each grid cell. The application of the scaling factors was done 

by multiplying the scale factor by the corresponding grid cell for every time step (Landerer and 

Swenson 2012). Finally, the data was clipped according to the outline of the SADC region (Figure 

3-17). 

 

 
 

Figure 3-17: Net ΔTWS according to GRACE ΔTWS SH 
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3.3.2.3. GLDAS NOAH data pre-processing 

 

For the GLDAS TWS 1, the data are presented in units of kg/m2. All the units where converted to 

cm. This is to ensure compatibility to the GRACE ΔTWS mascon units, which is in cm. There after 

the individual components (SM, SWE, CW) were aggregated, by summation. This value reflects 

the land surface component of the total terrestrial water budget. However, GRACE data reflects 

anomalies relative to a mean baseline period (2004-2009). For the GLDAS TWS 1 data to be 

compatible to the GRACE data, anomalies must be calculated relative to this same baseline 

period. Firstly, the mean GLDAS TWS 1 value was calculated for the months between 2004 –2009. 

This mean value is then subtracted from each monthly time-step in the GLDAS TWS 1 timeseries. 

This new value reflects GLDAS ΔTWS 1 relative the baseline period. Finally, the data was clipped 

according to the outline of SADC region (Figure 3-18). 

 

 
 

Figure 3-18: Net GLDAS ΔTWS 1 
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For the GLDAS TWS 2 dataset, the co-ordinate reference system is inconsistent with the GRACE 

data. THE GRACE data is centred on the antimeridian, while GLDAS TWS 2 is centred on the prime 

meridian. Hence, for this dataset, the co-ordinate reference system is changed so that the data is 

centred on the antimeridian. There after the data are converted from units of mm, to units of m. 

This GLDAS ΔTWS 2 is now compatible with the GRACE ΔTWS SH. As this dataset already represent 

anomalies relative to the mean baseline, no further pre-processing is needed. Finally, the data 

was clipped according to the outline of SADC region (Figure 3-19). 

 

 
 

Figure 3-19: Net GLDAS ΔTWS 2 
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3.3.2.4. Groundwater level data pre-processing 

 

The groundwater level data were received from the data providers as tabular spreadsheets in 

Microsoft excel and csv formats. The data were pre-processed and combined in the following 

manner: 

 

1) Spreadsheet were pre-processed by removing auxiliary data such as logger information, 

elevation data, borehole status, and renaming table headers in a uniform manner. This 

is done to produce a regular set of spreadsheets that include only depth to water level, 

borehole identification, observation date, and co-ordinates. 

2) Individual spreadsheet was then combined, into a single dataset. 

3) The dataset is curated by removing, duplicate data records, records with missing values, 

and erroneous depth to water level observations, such that only records with a borehole 

identification, date, and co-ordinates remain. 

4) Conversation of co-ordinates into decimal degree units, and conversion of depth to 

water level data to metres below ground surface. 

5) In some cases, both phreatic and semi-confined depth to water level data were collected. 

In this case the mean of the two is used as the depth to groundwater level. 

 

The above pre-processing resulted in a curated and cleaned data records, however, the presence 

of outliers and possible erroneous data might persist in the data. To address this, outliers where 

removed using a z-score approach. Any record that was 3 standard deviation above or below the 

mean was removed. Thereafter, a sample of the data, April 2002 to March 2020 was extracted 

from the dataset. This range is intended to match the GRACE data time range. The data record for 

this sample contain considerable temporal gaps in the time-series for many boreholes. This 

sample was aggregated into monthly averages, and only those boreholes with data for 150 and 

more month in between April 2002 and March 2020, were selected for further analysis. Temporal 

gaps were filled using a linear interpolation method (only up until the most recent month for a 

particular borehole).  

 

To compare groundwater level data to the GRACE ΔGWS and GGDI we process the groundwater 

level data in the same manner as the GRACE data. Firstly, a mean depth to groundwater level data 

for the baseline period (2004-2009) is calculated per borehole. This baseline reflects the same 

baseline period as the GRACE data. Every monthly record was then subtracted from the 

corresponding baseline for each borehole. This new value now reflects monthly depth to 

groundwater level anomalies (ΔGWL) relative to the baseline period. The processing up to this 

point is used to validate the GRACE ΔGWS. Thereafter the groundwater level deviation is 

calculated by subtracting the groundwater level anomalies from the average anomaly for a 
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calendar month for each borehole. This value reflects the deviation of the groundwater level 

anomaly compared to normal conditions. The groundwater level deviation is then normal 

according to the mean and standard deviation. This normalized groundwater level deviation is 

correlated with the GGDI. 

 

3.3.2.5. MODIS data pre-processing 

 

The MODIS data has units of kg/m2/day. The data is first converted to metres of equivalent water 

thickness, by dividing by 1000. Thereafter, the data are aggregated into monthly cumulative ET, 

based on a 32-day month. Finally, a single month (May 2002), was used as a test sample, for 

further analysis. 

 

3.3.3. Calculating the GRACE-derived groundwater storage anomalies (ΔGWS) 

 

In-order to determine the ΔGWS signal within the GRACE ΔTWS mascon data, the various 

terrestrial water components must be removed from the model. In this case a water mass balance 

approach was used (Rodell et al 2007). In this case the ΔGWS = ΔTWS – Δ (SM + SWE + CW). For 

every timestep the corresponding GLDAS ΔTWS 1 is subtracted from the GRACE ΔTWS mascon 

data (Figure 3-20). It is important to note that the GLDAS ΔTWS 1 data be subtracted from the 

GRACE ΔTWS mascon data, and the GLDAS ΔTWS 2 data be subtracted from the GRACE ΔTWS SH 

data (Figure 3-21), as these set are complimentary. These two versions of ΔGWS are used for 

different applications. Although it is quite reasonable to assume the terrestrial water constitutes 

most of the GRACE ΔTWS signal. Changes in surface water storage and biomass can have an effect 

(Rodell et al 2007). However, these components are not included in the model. 
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Figure 3-20: Net GRACE ΔGWS for Mascon version 
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Figure 3-21: Net GRACE ΔGWS according to SH version 

 

3.3.4. Validation 

 

To ground truth GRACE ΔGWS mascon data, a correlation analysis was performed with ΔGWL. A 

total of 894 boreholes were used in this analysis, following the pre-processing. For every 

borehole, the underlying pixel values were selected. Both a Pearson’s and Spearman rank 

correlation where performed for each sample set (i.e. normalized groundwater level deviations 

and GRACE ΔGWS mascon data) (Figure 3-22, Figure 3-23).  
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Figure 3-22: Histogram of the Pearson’s correlation coefficient between groundwater levels and GRACE 
ΔGWS Mascons 

 

 
 

Figure 3-23: Histogram of the Spearman’s rank correlation coefficient between groundwater levels and 
GRACE ΔGWS Mascons 
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The results presented in the histograms above indicate an overall poor correlation between GWL 

and GRACE ΔGWS mascons. Majority of the correlations are centred around –0.7 to 0.  Ideally, 

strong positive correlation as more favourable, to ensure GRACE mimics local groundwater 

storage trends. In fact, only a small number of boreholes have a correlation above 0.7. This 

indicates no plausible correlation between the datasets. However, GRACE data is not expected to 

resolve small scale or even local changes in groundwater storage, as the GRACE signal is smoothed 

to ~300km, prior to release. It must also be noted that the preferred approach is to derive local 

groundwater storage anomalies from boreholes records to compare to GRACE ΔGWS (Frappart 

and Ramillien 2018). However, the lack of specific yield data and groundwater level data across 

SADC makes this approach difficult to implement.  

 

3.3.5. Downscaling 

 

An attempt was made to test a downscaling method on the entire SADC. The following sections 

describes the application of attempting to downscale GRACE ΔGWS SH from a ~110km resolution 

to a ~5km resolution. For this application a method developed by Yin et al (2018) was used to test 

a regional downscaling of GRACE ΔGWS, using evapotranspiration data as the predictant. The 

approach relies on a correlative relation method. MODIS evapotranspiration data was used for 

this analysis and is substituted in the following equation: 

 

 
 

where GWSlocal is the downscaled GWS at a local scale; GWS GRACE is the gridded GRACE ΔGWS SH 

at the standard resolution of approximately 110 km (1°); GWS GRACE_min is the minimum gridded 

ΔGWS among the 211 months from 2002 to 2019; ET local is the ET at a local scale; ET avg is the 

upscaled ET with the same spatial resolution as the gridded GRACE data; ET avg_min is the minimum 

ET among the 211 months from 2002 to 2019 at a resolution of approximately 110 km. However, 

according to Yin et al (2018) this method only applies where there is a strong correlation between 

evapotranspiration and GRACE groundwater storage anomaly. 

 

Firstly, the MODIS ET data is upscaled using a linear interpolation algorithm (ET avg). Thereafter 

the minimum ET avg along the time series for each pixel is determined (ET avg_min). Following this, 

the minimum GRACE ΔGWS SH along the time series for each pixel is determined (GWSGRACE_min). 

A single time step (May 2002) was extracted from the time-series to perform the downscaling. 

This was because the processing is computational extensive. The values were then substituted as 

per the formula above. The results of the downscaling were not satisfactory, in terms of spatial 
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smoothing. The original pixel dimension is persisting as an artefact in the downscaled data (Figure 

3-24). It is possible that the correlation between MODIS ET and GRACE ΔGWS SH is poor, which is 

affecting the efficiency of the algorithm. Additionally, the execution of the algorithm through the 

programming code may not be optimized. This requires additional experimentation. 

 

 
 

Figure 3-24: Result of GRACE ΔGWS downscaling, for May 2002 

 

3.3.6. Calculating GGDI 

 

The GGDI is calculated using the GRACE ΔGWS mascons (at 0.25o x 0.25o resolution) (Figure 3-25). 

The GGDI is calculated as follows: 

 

The monthly average values are calculated. The is simply the average groundwater storage 

change for each of the unique months of the year (n=1, ........12). Each monthly GRACE GWS value 

is subtracted from its corresponding average to derive the Groundwater Storage Deviation (GSD). 

The GSD provides us with an indication of deviations from normal groundwater storage 

conditions. positive deviation indicates a surplus of groundwater storage, while negative 

deviations indicate a deficit of groundwater storage. A deficit infers the presence of drought 
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conditions. The GSD is normalized according to mean and standard deviation. The normalized GSD 

is the GGDI.  

 

 
 

Figure 3-25: Schematic of the calculation of the GGDI. (Top: Mean GRACE GWS for SADC; Second from top: 
Monthly average of GWS for SADC; Third from top: The Mean GSD for SADC, which is the 
monthly mean subtracted from the GRACE GWS; Bottom: the Mean GGDI, which is the 
normalized GSD) 

 

3.3.7. Validation of GGDI 

 

Following the creation of the GGDI for SADC, a second validation is performed to ensure that the 

GGDI provides a representative analysis of on the ground conditions. Here we use groundwater 

level time series processed in the same manner as the GRACE data, up until the GGDI. This 

groundwater level dataset is essentially a groundwater level indicator, that mimics the GGDI. 

Figure 3-26 displays the Pearson’s correlation coefficient results between the groundwater level 

deviations for 894 boreholes and the GGDI. Figure 3-27 displays the Spearman’s rank correlation 

coefficient results between the groundwater level deviations for 894 boreholes and the GGDI. 
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Figure 3-26: Histogram of the Pearson’s correlation coefficient between groundwater levels deviations and 
GGDI 

 

 
 

Figure 3-27: Histogram of the Spearman’s rank correlation coefficient between groundwater levels 
deviations and GGDI 
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In this case the correlations results are markedly improved over the correlation results for the 

GRACE GWS data. Overall, there is a high number of boreholes that have a high positive 

correlation. Here, high positive correlation is preferred, as this demonstrates similar trends 

between the GGDI and the groundwater level deviations. The better correlations results seen 

here, may also be due to the fact that the data has been normalized. In comparison to the 

previous validation which has was done without normalization of the data. 

 

3.3.8. Groundwater storage risk 

 

The percentage negative GGDI, mean negative GGDI and trend GGDI were not classified but rather 

rescaled linearly to values between 1 and 5 (with 1 indicating low groundwater drought risk and 

5 indicating high groundwater drought risk). This classification system is only applicable to the 

SADC region.  

 

3.3.8.1. Percentage negative GGDI 

 

This factor explains the percentage of the time-series that is in a groundwater storage deficit, or 

drought, according to the GGDI. This layer is developed by calculating the number of months with 

a negative GGDI value, divided by the total number of months in the time series, and expressed 

as a percentage. This is done for every pixel, along its time series. The data is then resampled from 

a ~25km resolution (native resolution of GRACE mascon data) to a ~5km resolution using a linear 

interpolation algorithm. Spatial distributions reflect differences in the lengths and frequency of 

drought conditions along the time series. In regions were groundwater storage drought 

conditions are more numerous have been classed as more sensitive, compared to region that 

experience fewer groundwater storage drought conditions (Figure 3-28).  
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Figure 3-28: The percentage negative GGDI with values in red showing areas more sensitive to drought 
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3.3.8.2. Mean negative GGDI 

 

This factor explains the mean intensity of groundwater storage drought conditions according the 

GGDI. The larger the GGDI value, the larger the deviation from normal conditions - the more 

intense the groundwater storage drought conditions. This layer is developed by calculating the 

arithmetic mean for only negative GGDI values along the time-series for every pixel. The data is 

then resampled from a ~25km resolution to a ~5km resolution using a linear interpolation 

algorithm. Spatial distributions reflect differences in the mean intensity of groundwater storage 

drought conditions. Regions that have a higher mean intensity are more sensitive, compared to 
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regions that have a lower mean intensity (

 
 

Figure 3-29). 
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Figure 3-29: The mean negative GGDI with values in red showing areas more sensitive to drought. 

 

3.3.8.3. Trend GGDI 

 

This factor explains the trend in the GGDI. To develop this layer the time-series was first de-

seasonalised, using the Loess smoothing (STL) (Cleveland et al 1990). This is a common step in 
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time-series analysis, is required to reduce the effects on seasonality on GRACE data (Rodell et al 

2018). There after the linear regression model was fitted to the de-seasonalised GGDI. In this case, 

we use the slope of the linear regression line to reflect the trend in the time –series. The data is 

then resampled from a ~25km resolution to a ~5km resolution using a linear interpolation 

algorithm. Positive slopes indicate an increasing trend in the GGDI (i.e. The GGDI is trending 

toward more positive values) (Figure 3-30). This means that groundwater storage drought 

conditions are becoming less intense or shifting towards a surplus in groundwater storage. The 

data is rescaled where high positive slopes, indicate a lower sensitivity, while lower negative 

slopes indicate higher sensitivity.  
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Figure 3-30: The linear regression trend of the GGDI with values in red showing areas more sensitive to 
drought 

 

3.3.8.4. Calculation of groundwater storage risk 

 

Groundwater storage risk = 0.4 * negative GGDI + 0.3 *mean negative GGDI + 0.3*trend GGDI 
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The groundwater storage risk is given in Figure 3-31. 

 

 
 
Figure 3-31: The groundwater storage risk map based on the GGDI parameters. 
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In Figure 3-31 warm colours (reds) represent areas of high groundwater storage risk, while blue 

colours indicate areas of lower groundwater storage risk. Based on the three groundwater storage 

risk factors, regions in southern Mozambique, Zimbabwe, Malawi, Northern Angola, and parts of 

the Namibian coast have high groundwater storage risk. This implies that these regions 

experiencing groundwater storage deficits, greater extreme groundwater storage changes, and 

possible negative trends in groundwater storage drought conditions, compared to the lower risk 

regions. 

 

3.4. Human groundwater drought vulnerability 

 

Hydrogeological groundwater vulnerability is made up of the following parameters: 

 

• Groundwater dependence- dependence and groundwater demand is governed by use 

for domestic, livestock and irrigation purposes. Higher population, irrigation densities 

and livestock densities imply higher drought risk and closeness to surface water imply 

less drought vulnerability as surface water is regarded as an alternative source of water 

• Human capacity for drought preparedness- this depends on individual and societal 

knowledge and ability to survey hydrogeology conditions and mitigate the hazards. Three 

types of human capacity and preparedness are considered: society, science and 

government. This parameter was not used at this level as the data is not detailed enough 

and is only available at country scale 

 

Population density map shows the amount of people per square area. The Gridded Population of 

the World, Version 4 (GPWv4) data was used. It models the distribution of the human population 

on a continuous raster surface. The primary sources of data are population censuses and 

administrative data and these are converted into a grid using areal weighting (CIESIN 2016). The 

ranges used are based on (SADC 2011) and are meant to enhance the variations in the SADC 

region. 

 

Irrigation density is based on the version 5 “Global Map of Irrigated areas” map. The information 

is provided at a spatial resolution of ~10 x 10 km and includes percentages of areas irrigated with 

groundwater, surface water or non-conventional sources of water. The groundwater component 

of the data was used.  The ranges used are based on (SADC 2011) which were based on Siebert et 

al (2010) and are meant to be used with the map. 

 

The FAO livestock density data are available that show the densities per livestock type i.e. of 

cattle, sheep, buffalo, goats, pigs and chicken and is presented in animals per km2 (Gilbert et al 

2018). To produce one map of combined livestock density, this was done by weighting the 
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different maps according to water use by the different livestock types. These are differentiated 

as the water usage by various livestock differs.  In the report by SADC (2011), the following 

equation was derived and was used in this study to create a weighted average map representing 

livestock density. 

 

Weighted livestock density = [Cattle*0.5] + [Pigs*0.2] + [Sheep*0.1] + [Goat*0.1] + 

[Poultry*0.01] 

 

The map was proven to be correct and was verified by using livestock water requirements data from 

various literature sources (Table 3-5). The ranges were the ones used in the original global maps with 

some variation to highlight the variations in the SADC region (Robinson et al 2014). 

 

Table 3-5: Estimates of livestock water requirements from various sources 

 
Animal Average water 

Requirement Range 

(L/day) per animal 

Reference 

Cattle 4.9-115 Ward and McKague, 2007 

5.55 South African Department of Agriculture and Rural Development, Province of KwaZulu-

Natal 

40-140 State of New South Wales through the Department of Trade and Investment, Regional 

Infrastructure and Services 2014 

Pig 1-22.7 Ward and McKague, 2007 

5-23 

 

South African Department of Agriculture and Rural Development, Province of KwaZulu-

Natal 

2-45 Government of Western Australia, Department of Primary Industries and Regional 

Development,2019 

Horses 13-59 Ward and McKague, 2007 

40-50 

 

State of New South Wales through the Department of Trade and Investment, Regional 

Infrastructure and Services 2014 

20-90 Government of Western Australia, Department of Primary Industries and Regional 

Development 2019 

Sheep 6.3-11.4 Ward and McKague, 2007 

4-11 

 

South African Department of Agriculture and Rural Development, Province of KwaZulu-

Natal 

4-12 State of New South Wales through the Department of Trade and Investment, Regional 

Infrastructure and Services 2014 

2.5-7 Government of Western Australia, Department of Primary Industries and Regional 

Development 2019 

Goats 4-10 Victoria Department of Environment and Primary Industries,2001 

5-6 FAO,1977 

5-20 Government of Western Australia, Department of Primary Industries and Regional 

Development 2019 

Chickens 0.005-0.32 Ward and McKague, 2007 

0.008-0.4 

 

South African Department of Agriculture and Rural Development, Province of KwaZulu-

Natal 

0.25 FAO,1984 
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For distance to rivers, perennial rivers were used. Rivers are considered alternative sources of 

water supply, proximity to a surface water body reduces the vulnerability to groundwater 

drought. The ranges used were the same as those used in SADC (2011). 

  

Table 3-6: Groundwater dependence parameters and reclassification values 

 
Parameter Ranges Reclassification values relating to drought 

risk 

Population density (people per km2) 0 0 

0-10 1 

10-50 2 

50-100 3 

100-250 4 

>250 5 

Livestock density (livestock per km2 weighted according to 

water demand) 

0 0 

0-5 1 

5-25 2 

25-50 3 

50-100 4 

>100 5 

Irrigation density (% of area irrigated by groundwater) 0 0 

0 - 0.1 1 

0.1-1 2 

1-2.5 3 

2.5-5 4 

>5 5 

Distance to perennial rivers (km) 0 0 

0-1 1 

1 - 2.5 2 

2.5 - 5  3 

5 - 10 4 

>10 5 
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Figure 3-32: The population density map of the year 2015. 
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Figure 3-33: The map showing the percentages of areas irrigated by groundwater 
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Figure 3-34: The weighted livestock density map 
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Figure 3-35: Map showing the distances to perennial rivers 

 

All parameters are weighted equally and used to calculate the human groundwater drought vulnerability 

using the equation below: 
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Human groundwater drought vulnerability = 0.25*Population density + 0.25*Livestock density 

+ 0.25*Irrigation density + 0.25*Distance to rivers 

 

The human drought vulnerability is given in Figure 3-36. 
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Figure 3-36: The human groundwater drought vulnerability map 
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3.5. Groundwater drought risk map 

 

The groundwater drought risk is calculated as follows (SADC 2011): 

 

Groundwater drought risk (G) = P x wP + V x wV   

Where:  

P =  Physical groundwater drought risk  

V =  Human groundwater drought vulnerability  

wP=  weight assigned to P = 0.5 

wV =  weight assigned to V = 0.5 

 

wP + wV =1 

 

Physical groundwater risk (P) =M x wM + H x WH  

Where: 

M = Meteorological groundwater drought risk  

H=  Hydrogeological drought proneness  

wM = weight assigned to M = 0.5 

wH =  weight assigned to H =0.5 

 

wM + wH = 1 

 

The results presented in this section are based on a scenario in which all the parameters are 

equally weighted. Alternative scenarios are discussed in Chapter 4. 
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Figure 3-37: Physical groundwater drought risk map (SADC 2011) 
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Figure 3-38: The 2020 groundwater drought risk map without the inclusion of the GGDI parameters 

 

Scenario 1 (groundwater drought risk map including GGDI parameters): 

 

Updated groundwater drought risk (G) = P x wP + V x wV + S x wS 
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Where:  

P =  Physical groundwater drought risk  

V = Human groundwater drought vulnerability  

S = Groundwater storage sensitivity  

wP = weight assigned to P = 0.34 

wV = weight assigned to V = 0.33 

wS  = weight assigned to S = 0.33 

 

wP + wV + wS =1 
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Figure 3-39: Updated groundwater drought risk map including the GGDI parameters with all parameters 
equally weighted 
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4. SENSITIVITY AND SCENARIO ANALYSIS 

 

Sensitivity analysis (SA) measure the uncertainty or variations in the output results obtained from 

models applied (Saltelli et al 2008 as cited by Thapa et al 2018). In more general terms it measures 

the robustness associated with the model output as a result of variations in input variables. It 

facilitates the understanding of the influence of individual input parameters on the model’s 

output by estimating the change in the output map with each change in inputs. The model output 

can be affected by the following factors: 

 

• The number of input parameters  

• Inaccuracies related to inputs, weights, and ranks assigned  

• The nature of the overlay performed 

 

4.1. Sensitivity analysis in weighting parameters 

 

GIS based composite mapping approaches have been criticised for not explicitly specifying the 

weighting methods, using subjective weighting and not evaluating parameter weights 

(Hagenlocher et al 2019). Hagenlocher et al (2019) recommend exploring the different weighting 

options and comparing the results using sensitivity analysis to evaluate their effects on the results. 

This was the approach undertaken to assess the weighting of the following submodules: 

 

• The climate sensitivity: two scenarios were tested, one in which all parameters were 

weighed equally and one in which the weights were varied according to SADC (2011) 

• The groundwater recharge potential calculation: two scenarios were tested; one in which 

all parameters were weighed equally and one in which the weights were varied according 

to SADC (2011) 

 

The scenarios are listed in Table 4-1 and Table 4-3. 
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Table 4-1: Climate sensitivity scenarios 

 

Scenario Parameters Weights 

Met 1 Rainfall amount (PANN) 0.4 

Consecutive dry days one calendar year (PDRS) 0.15 

Consecutive dry days more than one calendar 

year (PEXT) 

0.15 

Coefficient of variation (PSTD) 0.3 

Met 2 Rainfall amount 0.25 

Consecutive dry days one calendar year 0.25 

Consecutive dry days more than one calendar 

year 

0.25 

Coefficient of variation 0.25 

 

The resulting climate sensitivity maps from the two scenarios were subtracted to obtain a 

difference map. The results show that the most significant changes are in the low to medium 

drought risk ranges and the changes in the very low and very high classes are mostly below 20%.  
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Figure 4-1: A comparison of the two meteorological drought risk weighting scenarios. 

 

The changes in the meteorological drought risk classes were also assessed and the results 

presented in the Table 4-2 were obtained. The results compare the meteorological risk classes 

from both scenarios and show that the high and very high meteorological risk areas would also 

be classified as high and very high meteorological drought risk areas under both weighting 

scenarios (e.g. 100% of the area was classified in the range 4-5 or very high meteorological 

drought risk in both weighting scenarios). The largest image differences occur in the low to 

medium meteorological drought risk classes where the total class change for range 1-2 is 62 %, 

i.e. 62% of the areas were classified as low in one scenario and as medium in the second scenario. 

 



 

GMI-GDRI: Revised GDR Map – Technical Report  Final Draft 77 

 

Table 4-2: Meteorological drought risk weighing scenarios 

 
Percentages Range 0-1 

 

Range 1-2 Range 2-3 Range 3-4 Range 4-5 

Range 0-1 94 2 0 0 0 

Range 1-2 6 37 6 0 0 

Range 2-3 0 61 83 5 0 

Range 3.4 0 0 11 79 0 

Range 4-5 0 0 0 16 100 

Total 100 100 100 100 100 

Range  Changes (%) 6 62 17 21 0 

 

The groundwater recharge potential scenarios are shown in Table 4-3. 

 

Table 4-3: Groundwater recharge potential scenarios 

 
Scenario Parameters Weights 

GW_rech 1 Rainfall 0.5 

NDVI 0.35 

Slope 0.15 

GW_rech 2 Rainfall 0.34 

NDVI 0.33 

Slope 0.33 
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Figure 4-2: A comparison of the two groundwater recharge weighting scenarios. 

 

The result of subtracting the two maps show that the differences between the values of the two 

maps are less than or equal to 10% (Figure 4-2). The changes in the classes were also assessed 

and the results in the Table 4-4 were obtained. The results compare the recharge classes from 

both scenarios and show that the high to very high groundwater recharge potential areas would 

be classified as high recharge potential maps under both weighting scenarios (e.g. 93% of the area 

was classified in the range 4-5,very high groundwater recharge potential, in both weighting 

scenarios). The large image differences occur in the very low and low groundwater recharge 

classes (ranges 0-1 and 1-2) where the class changes are 61 % and 67 % respectively. 
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Table 4-4: Groundwater recharge potential image difference statistics  

 
Percentages Range 0-1 Range 1-2 Range 2-3 Range 3-4 Range 4 -5 

            

Range 0-1 39 0 0 0 0 

Range 1-2 61 33 0 0 0 

Range 2-3 0 67 67 4 0 

Range 3-4 0 0 33 91 7 

Range 4-5 0 0 0 5 93 

Total 100 100 100 100 100 

Range changes (%) 61 67 33 9 7 

 

A correlation analysis was also conducted between the two scenarios and an independent global 

dataset from Moeck et al (2020). The result shows that the map from scenario 1 (with rainfall 

highly weighted) correlates better with the 80 points in the SADC region from the global recharge 

dataset with a moderate positive correlation coefficient of 0.65 (Table 4-5). 

 

Table 4-5: Correlation analysis between the different weighting scenarios and Moeck et al (2020) 

 
 Moeck et al. 2020 dataset Equal (GW_rech 2) Original (GW_rech 1) 

Moeck et al. 2020 dataset 1   

Equal (GW_rech 2) 0.48 1  

Original (GW_rech 1) 0.65 0.85 1 

 

4.2. Sensitivity analysis for different macro-level scenarios 

 

Sensitivity analysis was also used to assess the variations in the different weighting of the input 

parameters on the groundwater drought risk map.  The most appropriate way of running such 

sensitivity analysis is by changing the weights of the criterion/criteria by specific percentage 

increments and calculating a map for each scenario. This process can generate hundreds of 

scenario maps (Chen et al 2009). For these scenarios, the pixel class changes are analysed and the 

following statistics can computed on the final drought risk maps: the mean, median minimum, 

maximum, range, standard deviation and the coefficient of variation on each cell. The following 

information can be derived from such statistics (Grandmont et al 2012, Quinn et al 2015): 

 

• the mean and minimum can show the most vulnerable areas, irrespective of the 

weightings of the parameters 

• low values of range and standard deviation for areas of high vulnerability indicate the 

robustness of the model identifying the most vulnerable areas 
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• the coefficient of variation (the standard deviation divided by the mean) map accurately 

represents areas where the predicted ratings are most sensitive to the choice of layer 

weights, the higher the coefficient of variation the more sensitive to parameter weights. 

 

This extensive scenario analysis was beyond the scope of the study and was not conducted. There 

was no need to perform such extensive analysis as this was previously done in SADC, 2011 and 

the results of the analysis were reviewed by regional experts who concluded that the 

groundwater drought risk map was representative of the status quo in the region. The five 

scenarios listed in Table 4-6 were the only ones explored.  

 
Table 4-6: Parameter weights for all scenarios 

 
Scenario Submodules Sub_sub_modules Parameters Scenario 

1 

Weights 

Scenario 

2 

Weights 

Scenario 

3 

Weights 

Scenario 

4 

Weights 

Scenario 

5 

Weights 

GDR 2 Climate 

Sensitivity 

Meteorological risk Rainfall amount 0.4 0.25 0.4 0.4 0.4 

Consecutive dry days 

one calendar month 

0.15 0.25 0.15 0.15 0.15 

Consecutive dry days 

more than one calendar 

month 

0.15 0.25 0.15 0.15 0.15 

Coefficient of variation 0.3 0.25 0.3 0.15 0.3 

Hydrogeologi

cal drought 

proneness 

Groundwater 

recharge potential 

Slope 0.15 0.33 0.15 0.15 0.15 

NDVI 0.35 0.33 0.35 0.35 0.35 

Mean annual rainfall 0.54 0.34 0.5 0.5 - 

Aridity index - - -  0.5 

Hydrogeologi

cal drought 

proneness 

Groundwater 

recharge potential 

(derived from 

rainfall) 

  0.5 0.5 0.5 0.5 - 

Groundwater 

recharge potential 

(derived from the 

aridity index) 

 - - - - 0.5 

Aquifer productivity   0.5 0.5 0.5 0.5 0.5 

 Human 

groundwater 

drought 

vulnerability 

Groundwater 

dependence 

Population density 0.25 0.25 0.25 0.5 0.25 

Irrigation density 0.25 0.25 0.25 0.2 0.25 

Distance to river 0.25 0.25 0.25 0.15 0.25 

Livestock density 0.25 0.25 0.25 0.15 0.25 

Groundwater drought risk map     

Module       

Physical groundwater drought risk  0.34 0.34 0.34 0.34 0.34 

 Meteorological risk 0.5 0.5 0.75 0.5 0.5 

 Hydrogeological 

drought proneness 

0.5 0.5 0.25 0.5 0.5 

Groundwater storage sensitivity  0.33 0.33 0.33 0.33 0.33 

Human groundwater drought vulnerability  0.33 0.33 0.33 0.33 0.33 
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Figure 4-3: The five scenario maps produced for the five weighting scenarios listed in Table 4-6 

 

Figure 4-3 shows all the maps from the five scenarios. Visually the maps look similar and 

correlation analyses show more than 95% correlation between all five maps. 
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The five scenario maps were further classified according to groundwater drought risk and the 

results were compared using image differencing. The image differencing approach adopted is 

when a pair of maps are subtracted from each other and change statistics are derived and these 

are shown in Figure 4-4 and Figure 4-5. The calculation compares the classified maps pixels in a 

pair of scenario images and record the proportion of pixels that are in the same class in both 

images and those that change classes from on map to the next. For example, a value of 100% 

indicates that all pixels are classified in the same class in both maps and therefore the classified 

maps are identical. The total class change percentages for all classes and scenarios are presented 

in the graph in Figure 4-4. Example of the image differencing results for some of the scenarios are 

presented in Tables 4-7 a, b and c. 

 

 
 

Figure 4-4: The total percentage class changes between the different scenarios 
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Table 4-7: Image differencing results per class for three scenario differences 

 

 
 

The results of image differencing show that although there are differences in the scenario maps, 

the maximum change in most pixels is by one risk class although a few pixels change by two 

classes. In order to verify these scenario maps and select the map that best represents the risk 

class of an area, direct measurements or expert knowledge would be generally used.  In this study, 

there was no information available to make such determinations.  
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Another useful map to analyse is the coefficient of variation/uncertainty map. It shows areas that 

are most sensitive to changes in the weightings of the various criteria (Quinn et al., 2015). Figure 

4-5 shows the coefficient of variation of the five scenarios in countries with moderate to very-

high groundwater drought risk areas. The interpretation of these results is that areas with high 

coefficient of variation, i.e. the areas most affected by parameter weightings have low 

groundwater drought risk. Although this map was created using only five scenarios, these initial 

results show that high groundwater drought risk areas would be classified as such regardless of 

the weightings used. This needs to be tested using more weighting simulation combinations. 
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Figure 4-5: Comparison of the GDR map with the coefficient of variation of the five scenario maps 

 

4.3. Scenario analysis using Bayesian Networks 

 

Scenario analysis using Bayesian networks (probabilistic networks) was also be explored. The 

GRiMMS method does not consider the relations between variables as the structure is vertical or 

hierarchical and there is no account for the lateral relationships that might exist between the 
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different parameters. Techniques like Bayesian Networks can be used to evaluate the 

relationships between the parameters and assess how sensitive the parameters or the 

groundwater drought risk map is to changes in the other parameters in the network. Bayesian 

Networks show the relationships between datasets in the specific domain, for example in this 

assessment the parameters for groundwater drought risk and represent the strength of these 

relationships as probabilities.  They provide a way of handling missing data, allow combination of 

quantitative and qualitative data, a way of including expert knowledge and provide good 

predicting accuracy even with small samples. These relationships can be used to perform scenario 

analysis and also provide a quantitative assessment of the most influential parameters in an 

assessment. 

 

Bayesian networks are graphical models that allow for the representation and reasoning of any 

uncertain domain. A Bayesian network is a directed acyclic graph (DAG) made up of a set of 

random variables from the problem domain, which are represented as nodes. A graph is made up 

of nodes (or vertices) and edges (or arcs). A DAG is a directed graph with no cycles (a cycle is a 

path that starts and ends at the same node). The arcs in the Bayesian Network represent the 

interactions/relationships between the variables. 

 

 

 

 

Figure 4-6: A simple network showing three variables, rainfall, vegetation and recharge 

 

Bayesian Networks can handle huge datasets with a lot of parameters and complex relationships 

and can still process at high speed. Since they are solved analytically, Bayesian Networks provide 

rapid response during query analysis when the model is updated. This is vital especially when 

performing scenario analysis and presenting the outcome of these for decision-making. Bayesian 

Networks do not only go from cause to effect, but analysis can be done from effect to cause in 

order to perform diagnosis, which assesses the different causes of given scenarios or effects. 
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The Bayesian Network for the groundwater drought risk map is shown in Figure 4-7. The network 

is created from data used in the GRiMMS method. Each raster cell on the map is intersected with 

all the classified layers and the data values are appended to a table; no weighting is applied to the 

parameters. Each row on the table then constitutes a “case” which is a combination of the 

different classes for all parameters. In a simplistic approach where all the data is available, 

probability values are the calculated by counting the number of times a parameter exists in 

different states. The conditional probabilities are then estimated by the ratio of the corresponding 

counts (Cowell et al 1999). 

 

The Bayesian Network can be used to validate the GRiMMS algorithm, querying different aspects 

of the parameters and assessing if the results obtained are intuitive or expected according to 

existing knowledge of the domain. As an example of how to interpret the results, the following 

are interpretations at some of the nodes: 

 

• Groundwater drought risk: for the whole SADC region, 5% of the area is in the “very low” 

(values 1-1.5) drought risk and 6% are in the “high” (2.5-3) risk areas and a negligible 

amount (<0 %) are in the “very high risk”  

• Meteorological drought risk: 44% of the SADC region are in the “very low” (0-1) drought 

risk range 
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Figure 4-7: The Bayesian Network showing the base probabilities/proportions for each class of each 
parameter 

 

The network can be queried by assessing the characteristics of areas of “very high” mean annual rainfall 

(Figure 4-8): 
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Figure 4-8: The Bayesian Network showing the base probabilities/proportions for each class of each 
parameter after query at “very high” mean annual rainfall 

 

The network can be queried by assessing the characteristics of areas of “very high” human drought 

vulnerability (Figure 4-9) 
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Figure 4-9: The Bayesian Network showing the base probabilities/proportions for each class of each 
parameter after query at “very high” human drought vulnerability 

 

 

After querying a specific parameter on the map, the probabilities are observed and this change of 

probabilities can be used to assess the sensitivity of certain aspects of the network. The Bayesian 

Network provided above is aggregated to the whole SADC region; the same Network can be 

aggregated at different spatial analysis scales, e.g. country or catchment level.  

 

Assuming that the selected analysis area has uniform characteristics and the cases are general to 

the entire area, scenarios such as climate change scenarios e.g. increase/decrease in mean annual 

rainfall can be interrogated by varying the probabilities at the different rainfall classes and 

assessing quantitatively how they change the groundwater drought risk or other related 

parameters in the area.  
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5. VERIFICATION AND VALIDATION OF THE GDR MAP 
 

Verification is meant to assess if the model functions at it is intended to. Model verification should 

test the robustness of the model to practical insignificant changes in data and the deviations of 

data and the system from the assumptions made during model development. The model can be 

checked for consistency against different input datasets (Jakeman et al 2006). In this study, the 

map produced by SADC (2011) can be used to verify our map as it uses the same model but some 

independent datasets.  

 

The maps are compared in Figure 5-1. The maps compared are the 2011 map, the 2020 map with 

no GGDI parameters and the final map after the GRACE GGDI parameters are included. The 

general patterns of groundwater drought risk are similar; the maps highlight the very low to low 

risk areas and the high to very high-risk areas. This shows that the method is robust and 

repeatable as it was tested using different datasets at varying spatial and temporal resolutions 

but still produced similar results. The major differences are in the low to moderate ranges which 

vary vastly amongst the maps. The GGDI parameters also have the effect of reducing the overall 

drought risk in the SADC region. 
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Figure 5-1: Comparison of the different GDR maps after classification according to drought risk values 

 

Validation is an important part of any modelling exercise. A model being a 

representative/abstraction of the real-world system must be assessed to ascertain if it is a 

reasonable representation of reality. In this study the aim is to validate the groundwater drought 

risk map. The most ideal situation is to validate with measurements or ground-truth the data. It 



 

GMI-GDRI: Revised GDR Map – Technical Report  Final Draft 93 

 

is also acceptable to validate modules are aspects of the model separately from each other using 

different datasets and results from other models. Often in, practice, it might not be possible to 

fully validate the model and this is the case in this study. The acceptable approaches for validation 

include the following: 

 

• Real world measurements (the most reliable and preferred method) 

• The use of expert knowledge i.e. independent experts from the modellers 

• Validation of the results using outputs from other independent studies (which is not 

highly recommended as the independent study might not also be a true representation 

of the system 

 

There is no data per ser on groundwater drought as it is not an observable phenomenon and there 

are but various approaches that are applicable to our study: 

 

• The comparison of the GDR map with the Africa groundwater datasets created by 

(MacDonald et al 2012) - which used field based datasets from various aquifer studies  

• The validation of the GDR map using data and results from independent studies that 

utilised groundwater levels, rainfall and drought indices like the Standardized 

Precipitation Index (SPI) for the assessment of groundwater drought (Meyer 2005, 

Cuthbert et al 2019) 

 

Figure 5-2 shows the groundwater storage map and a map showing estimated volumes calculated 

per country in the SADC region (MacDonald et al 2012). These maps are compared to the 

groundwater drought risk map. The groundwater maps were created using the 1:5 million scale 

geological map of Africa and quantitative information from the national hydrogeological maps 

and the georeferenced aquifer studies for aquifer productivity. For each of the aquifer 

flow/storage types an effective porosity range was assigned based on a series of case studies 

across Africa and surrogates in other parts of the world. A total of 283 aquifer datasets were 

compiled from 152 aquifer studies identified from various literature. Good quality 

hydrogeological maps and studies were available for most of southern Africa. To estimate 

groundwater storage the saturated aquifer thickness was multiplied by effective porosity. 

Estimates of the total volume groundwater per country were produced and these were also 

represented as water depth.  

 

There is some correlation between the groundwater storage map especially countries like Malawi, 

Madagascar, Zimbabwe, Tanzania Zambia and Namibia have low groundwater volumes and on 

the groundwater drought risk map the areas most prone to groundwater drought are in these 



 

GMI-GDRI: Revised GDR Map – Technical Report  Final Draft 94 

 

countries. The DRC has low groundwater drought risk and large groundwater volumes as indicated 

in data from MacDonald et al. 2012 

 

 
 

Figure 5-2: British Geological Survey groundwater storage maps for Africa compared to the groundwater 
drought risk map (MacDonald et al 2012) 
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Indices like the Standardized Precipitation Index (SPI) can be used to assess drought and therefore 

validate the groundwater drought risk map. The SPI is the most used indicator worldwide, and in 

2009, WMO recommended SPI as the main meteorological drought index that countries should 

use to monitor and follow drought conditions (Hayes et al 2011). The SPI indicator, which was 

developed by Mckee et al (1993), and described in detail by Edwards and Mckee (1997), measures 

precipitation anomalies at a given location, based on a comparison of observed total precipitation 

amounts for an accumulation period of interest (e.g. 1, 3, 12, 24, up to 72 months), with the long-

term historic rainfall record for that period.  Statistically Guttman (1994) determined that the SPI 

from 1-24 months is the best practical range for 50-60 years of data. Beyond 24 months, 80-100 

years data is required. If SPI is calculated on less than 30 years of data, the sample size is smaller 

and the confidence in the result is weaker. For hydrogeological drought analysis, 6 – 24 months 

SPI should be considered.  

 

The historic record is fitted to a probability distribution (the “gamma” distribution), which is then 

transformed into a normal distribution such that the mean SPI value for that location and period 

is zero. For any given region, increasingly severe rainfall deficits (i.e., meteorological droughts) 

are indicated as SPI decreases below ‒1.0, while increasingly severe excess rainfall are indicated 

as SPI increases above 1.0. The advantages of SPI are that it is easy to calculate, can be calculated 

at multiple timescales and enables comparison of data from different climates (WMO 2012). The 

standardised classes for SPI are as shown in Table 5-1: 

 

Table 5-1: SPI values and their classification 

 

 
 

The has been the development of groundwater drought indices for groundwater drought analyses 

and some examples are: 

 

• The Standard Water-Level Index (SWI), applied by Bhuiyan (n.d.) in India 

• The Standard groundwater Index (SGI), similar to SPI but derived from groundwater level 

data (Bloomfield and Marchant 2013) 
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The discussion of the derivation and application of these indicators is beyond the scope of this 

project but can be investigated in follow up work or on site-specific studies. 

 

There are various studies in literature that correlate the SPI to the groundwater level data or SGI 

and use the relationships to assess and monitor groundwater drought and some examples are 

listed below: 

 

• Leelaruban et al (2017) studied 32 boreholes in the United States and correlated the 

water levels to various drought indices. The results showed good correlation between 

groundwater levels and 24 months SPI had the highest correlation with the data with 

correlation coefficients of - 0.6 (moderate) or higher  

• Liu et al 2016 conducted a study in which they correlated the 1 to 12 months SPI and SGI 

of boreholes in China with varying results in different boreholes and regions in the study 

area. Moderate correlation values of between 0.5 and 0.6 were obtained and the results 

showed clear discrepancies between the SGI and the SPI. 

• Kubicz (2018), in the study of German and Dutch boreholes, also found low correlation 

between SGI and 24 months SPI in some boreholes with the correlation coefficients 

ranging from 0.17-0.3 

• Kubicz and Bąk (2019) studied boreholes in Poland and analysed data from 1981-2015 

and found low correlation values between monthly average groundwater level and 24 

months SPI 

• Bloomfield and Marchant (2013) were more successful in establishing relationships 

between SPI and SGI after analysed wells in the UK with 29 years records of data, high 

correlations coefficient for 0.7-0.87 were obtained 

• Meyer (2005) conducted a study in South Africa in which groundwater levels were 

compared with SPI calculated from rainfall data. The boreholes used are shown in Figure 

5-3. The study revealed good correlation between the time-series SPI and groundwater 

level data 

 

The overall conclusions from these studies was that the low level of the correlation coefficient did 

not imply the lack of correlation but rather indicates that other factors besides precipitation 

influence groundwater drought. Bloomfield and Marchant (2013) and Van Loon (2015), indicated 

that the lack of a linear relationship between meteorological drought and groundwater drought 

is usually because both droughts are delayed.  

 

Bloomfield and Marchant (2013); Chamanpira et al (2014); Kumar et al (2016) acknowledged that 

groundwater level and SGI time-series data are influenced by local recharge processes and 

regional to site specific saturated process. Khan et al (2008); Whittemore et al (2016) suggested 
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that relationships between SPI and the level of groundwater depend primarily on location in the 

hydrodynamic system, rainfall shortages, and groundwater exploitation accounting for economic 

purposes, in this case for irrigation of fields 

 

For validation of the groundwater drought risk map in this study, the idea was correlate the SPI 

data with long-term groundwater level data and characterise the drought at these locations. The 

challenge was the availability of long-term time-series groundwater level data covering the whole 

SADC region. The only data available for validation was the data from Cuthbert et al (2019) (see 

Figure 5-3). Groundwater anomalies were correlated with SPI calculated from CHIRPS version 2 

monthly rainfall data for the years 1981-2019. 1-12 months and 18- and 24-months SPI values 

were calculated using the SPI Generator software (University of Nebraska 2020). The software 

also output information on identified droughts at various thresholds, drought duration, peak 

values and frequency of the SPI values. This is a lot of information and an in-depth analysis is 

beyond the scope of this study. The study will only highlight the aspects pertinent to the validation 

of the GDR map. The SPI values were correlated with groundwater level anomalies.  
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Figure 5-3: Boreholes from Cuthbert et al. 2019 and Meyer 2005 overlaid on the groundwater drought 
risk map and the aridity index 

 
Table 5-2 list the boreholes used in analysis, the dates and number of records assessed and the 

correlation coefficient values obtained at the 9, 12, 18- and 24-months accumulation level. WMO 

(2012) recommends 1-2 month SPI for meteorological drought, 1-6 month for agricultural drought 
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and 6-24 month SPI for hydrological drought analyses (Lloyd-Hughes and Saunders 2002, 

Leelaruban et al 2017, Kubicz and Bąk 2019). 

 
Table 5-2: The boreholes, groundwater level anomaly data statistics and the correlation to various SPI 

levels 

 
 

Namibia 
(Rooibank) 

Namibia 
(Swartbank) 

Zimbabwe 
(Khami) 

South Africa 
(Sterkloop) 

South Africa 
(Modderfon
tein) 

Tanzania 
(Makutapor
a) 

GWL anomaly 
data 

1999-2017 1975-2016 1989-2015 1973-2016 1968-2017 1955-2016 

GWL anomaly 
number of 
records 

60 86 211 6090 76414 522 

6-month SPI 
correlation 

-0.38 0.04 0.31 0.43 -0.17 -0.09 

7-month SPI 
correlation 

-0.41 0.10 0.36 0.47 -0.17 -0.05 

8-month SPI 
correlation 

-0.38 0.08 0.43 0.52 -0.17 -0.04 

9-month SPI 
correlation 

-0.36 0.10 0.50 0.54 -0.18 -0.03 

10-month SPI 
correlation 

-0.36 0.15 0.57 0.56 -0.18 -0.03 

11-month SPI 
correlation 

-0.38 0.14 0.60 0.58 -0.16 0 

12-month SPI 
correlation 

-0.36 0.16 0.60 0.61 -0.14 0.02 

18-month SPI 
correlation 

-0.32 0.28 0.61 0.64 -0.04 0.06 

24-month SPI 
correlation 

-0.30 0.33 0.59 0.67 0 0.06 

 

There were low correlation values between the SPI products and the groundwater anomaly data 

as shown in Table 5-2. There was mixed result obtained with the Zimbabwe (Khama) and the 

South Africa (Sterkloop) boreholes showing the highest and moderate correlation to SPI. The 

lowest correlation was obtained for the Tanzania (Makutapora) borehole. Various authors have 

ascertained that this low correlation does not imply no correlation but rather indicates that other 

factors besides precipitation influences groundwater drought, e.g. local aquifer characteristics 

and groundwater abstraction. It could well be that there are not enough rainfall data (39 years of 

data) and there are a few records for some of the boreholes. 

 

Despite this low correlation, there were some trends that could be identified from the results. 

Drought periods identified for all boreholes with the 1-month SPI correlated with independent 
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data on the droughts that have been experienced in the countries (EM-DAT 2009, Masih et al 

2014) (Figure 5-4 and Table 5-3). 

 
 

Figure 5-4: 1 month SPI droughts for the boreholes and their durations and peak values 

 



 

GMI-GDRI: Revised GDR Map – Technical Report  Final Draft 101 

 

Table 5-3: Droughts experienced in the different countries 

 
Country Drought years 

Angola 1981, 1985, 1989, 1997, 2001, 2004, 2012 

Botswana 1965, 1968, 1970, 1981-1984, 1984-1985, 1987-1988, 1991-1993, 1990, 2005 

Democratic Republic of Congo 1978, 1983 

Comoros 1981 

Lesotho 1968, 1983, 1990, 1991-1993, 2002-2003, 2007, 2011 

Madagascar 1981, 1988, 2000, 2002, 2005, 2008 

Mozambique 1979, 1981, 1984-1985, 1987, 1990, 1998, 2001, 2003, 2005, 2007, 2008, 2010 

Mauritius 1999 

Malawi 1987-1988, 1990, 1991-1993, 1992, 2002, 2005-2006, 2007, 2012 

Namibia 1981, 1990, 1991-1993, 1995, 1998, 2001, 2002-2003, 2013 

Eswatini 1981, 1984, 1990, 2001, 2007 

Tanzania 1967, 1977, 1984-1985, 1988, 1990, 1996, 1997-2000, 2002-2003, 2004, 2006, 2011 

South Africa 1964, 1980, 1981, 1986, 1988, 1990,1991-1993, 1995, 2004 

Zambia 1981, 1983, 1990, 1995, 2005-2006 

Zimbabwe 1981, 1984-1985, 1990, 1991-1993, 1998, 2001, 2002-2003, 2007, 2008-2009, 2010 

 

Figures 5-5 to 5-9 show the graphs of SPI and groundwater anomalies at the boreholes analysed. 

The values of groundwater drought risk at these locations are: 

 

• 2.84 (high) at the Namibia Rooibank site 

• 2.75 (high) at South Africa Sterkloop 

• 2.71 (high) at Namibia Swartbank 

• 2.46 (moderate) at South Africa Modderfontein 

• 2.41 (moderate) at Zimbabwe Khama 

• 2.31 (moderate) at Tanzania  

• 1.66 (low) at 3024CA00328 South Africa 

 

Borehole 3024CA00328 was analysed in a separate study by Meyer (2005), correlating a 

groundwater water level record of more than 40 years near De Aar with the associated SPI (Figure 

5-5). The correlation between the two datasets over the entire record period was good and both 

the larger and smaller anomalies (amplitude and duration) correlated well. 
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Figure 5-5: 3024CA borehole groundwater level graph and 24 month SPI at the top and the drought 
graphs at the bottom. 
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Figure 5-6: South Africa (Sterkloop) borehole groundwater level anomalies and SPI plots at the top and 
the SPI drought graphs at the bottom 
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Figure 5-7: Namibia (Swartbank) borehole groundwater well anomalies and SPI plots at the top and the 
SPI drought graphs at the bottom. 
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Figure 5-8: Zimbabwe (Khami) borehole groundwater well anomalies and SPI plots at the top and the SPI 
drought graphs at the bottom 
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Figure 5-9: Tanzania (Makutapora) borehole groundwater well anomalies and SPI plots at the top and the 
drought graphs at the bottom. 

 

The only aspect of the graphs that can be linked to groundwater drought risk are the fluctuations in the 

values of both the groundwater level anomalies and the SPI. Meyer (2005) found that in boreholes were 

groundwater levels follow even the small variations in SPI values, it is an indication that at least some 

groundwater recharge occurs during almost every year. In borehole 3024CA00328, a low groundwater 

drought risk location, the graphs follow this trend. In boreholes the high-moderate drought risk areas, 

especially Namibia, Zimbabwe and Tanzania, the groundwater levels decline for long periods of time 

before recovery. Meyer (2005) noted this trend in some boreholes, of long declining levels, in some cases 

up to 25 years and these periods are then terminated by abrupt rises or return of the groundwater levels 

to the original reference level, or sometimes even higher. Depending on the intensity and duration of the 

rainfall event or the period over which above average rainfall is recorded, this return of the groundwater 

level occurs within months after the onset of the rainfall event.  
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This was confirmed by Cuthbert et al (2019), who assessed the relationships between precipitation and 

recharge across a diverse range of climatic and geological contexts in sub-Saharan Africa, using 

groundwater-level time series data. Cuthbert et al (2019) concluded that in arid areas there are large 

groundwater response times and this phenomenon is evident in the groundwater level anomaly graphs at 

the locations in Namibia, Tanzania and Zimbabwe. Episodic or infrequent recharge occurring during a few 

seasons or years in a decade is prevalent in these environments. The greatest recharge can occur during 

years of relatively low total precipitation because of intense precipitation occurring over a range of 

timescales depending on the local conditions of soils, geology and rainfall intensity. Cuthbert et al (2019) 

also noted that groundwater in some currently hyper-arid regions was recharged when a wetter climatic 

regime prevailed in the past and this was referred to as having ‘palaeo’ recharge frequency. 
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6. CONCLUSIONS 

 

The GRiMMS algorithm is a GIS based approach that involves the weighting of parameters and 

adding them to get a groundwater drought risk map. The GRiMMS algorithm was updated and 

revised by the inclusion of a groundwater storage sensitivity module, which incorporates GRACE 

satellite imagery groundwater drought indices. The groundwater drought risk map is generated 

for regional analysis and it should be used with caution on more site-specific studies. This is due 

to the low resolutions of the data used at that scale and also the generalisations that do not take 

into account local conditions as well as the loss of detail, information and generalisations when 

the data is grouped into classes. The algorithm is also applicable to small scale analysis but more 

detailed data can be used to refine the results. 

 

GRACE is a novel application of measuring Earth’s gravitation field to characterize terrestrial water 

storage changes on a regional scale. GRACE data provide an opportunity to include regional 

groundwater storage information into the GRiMMS algorithm. Here the major challenges include 

defining a set of unique factors representing groundwater storage drought, as well as resolving 

the resolution mismatch between the GRACE data and the GRiMMS algorithm. To define a set of 

representative groundwater storage drought factors the GGDI approach is used to define the 

percentage negative GGDI, the mean negative GGDI, and the linear trend in the GGDI. Together 

these factors were combined as the groundwater storage risk module. This module describes the 

sensitivity of groundwater storage to drought conditions. The map derived from groundwater 

storage risk illustrate spatial distributions of varying groundwater storage risk, with the main high 

groundwater storage risk area underlain by parts of southern Mozambique, Zimbabwe, Malawi, 

Northern Angola, and parts of the Namibian coast. The scale mismatch was addressed using linear 

interpolation approach resampling the GGDI factors from ~25km to 5km. An attempt was made 

to resolved resolution issues by downscaling of the GRACE data. However, this process yielded 

inconsistent results. While the scale of GRACE data is better suited for regional scale analysis, an 

attempt was made to ground truth the GRACE GWS data and the GGDI using groundwater level 

time-series data. Overall, the GRACE GWS data show a poor correlation with groundwater level 

anomalies. While the GGDI did show an overall better correlation, it still does not fully mimic 

trends in the local groundwater level data. It must be noted that resolving the scale mismatch 

between GRACE data and local scale conditions is an ongoing process in the literature. 

 

The major challenge with this GIS approach is justifying or selecting the weightings assigned to 

the parameters. Groundwater drought risk is not an observable phenomenon so there is no 

“measured data” from which to estimate these weights. Sensitivity analysis was used to assess 

the differences in the groundwater drought risk maps as the weights of the various parameters 

were varied. Five scenario maps were created and the results were analysed using image 
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differencing to compare a pair of scenarios at a time and nothing how the pixels change class 

value from one map to the next. The associated uncertainty due to weighting variations were also 

presented using a coefficient of variation map generated from the five maps. The results from the 

coefficient of variation map showed that most areas with high to very high groundwater drought 

risk are not sensitive to changes in the weighting of parameters. Although a limited number of 

scenarios were tested, this initial finding shows that these areas will be highlighted as high risk 

regardless of the weightings applied. This needs to be verified with more detailed data at more 

localised scales.  

 

Bayesian Networks have been introduced as a tool for doing scenario analysis. The Network learns 

patterns from the data (or expert knowledge in the absence of measured data) and these are 

presented graphically as percentage probabilities. Any node on the network can be queried and 

the effects of the changes are propagated throughout the network and this query computation is 

done rapidly. Bayesian Networks are applicable at any spatial level of analysis are useful in 

scenario analysis for example accessing the effect of climate change scenarios on the 

groundwater drought risk and other related parameters. This tool can be investigated further in 

follow up work. 

 

Validation of the model is also a crucial aspect to ensure that it is a representative of reality. 

Validation can be conducted on the entire model or on separate aspects but preferably using 

measured data. In the absence of measured data, results from independent studies or expert 

knowledge can be used for validation of the maps. In the report, different aspects of the GRiMMS 

algorithm were validated using independent datasets. For example, the groundwater recharge 

potential map was validated using a global recharge data from various aquifer studies compiled 

by Moeck et al (2020) and some moderate correlation was obtained between the datasets. These 

results should be used with caution due to the distribution of data, which did not cover most parts 

of the study. More data is needed to verify these results, especially from boreholes in the humid 

climates; there were no boreholes with long groundwater level time series records. 

 

The groundwater drought risk map was validated using the groundwater storage maps produced 

by Macdonald et al 2012. There was some agreement between the two maps as the countries of 

low groundwater volumes identified in Macdonald et al 2012 where the countries with areas with 

high to very high groundwater drought risk throughout the region. 

 

The drought risk map was also validated using data by comparing groundwater level anomaly data 

with the SPI products derived from rainfall data for boreholes in South Africa, Namibia, Zimbabwe 

and Tanzania. There were low correlation values between the SPI products and the groundwater 

anomaly data. Despite this low correlation, there were some trends that could be identified from 
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the results drought areas identified using SPI products could be linked to declining groundwater 

levels. Groundwater drought risk could be associated to the shape of the groundwater level 

graphs. In high drought risk areas, there are long declining levels, which are then terminated by 

abrupt rises or return of the groundwater levels to the original reference level, or sometimes even 

higher, depending on the intensity and duration of the rainfall event. In low drought risk areas, 

the groundwater level curves tend to follow even small variations in SPI, showing some 

groundwater recharge occurs during almost every year. This was supported with studies by Meyer 

(2005) and Cuthbert et al (2019) which were conducted on a small dataset. The challenge is 

finding a lot of boreholes with a long groundwater level record. 

 

Several aspects of the GRiMMS algorithm that were not addressed in this report include the 

inclusion of human capacity aspect of the human groundwater drought vulnerability and 

groundwater threats to compute the groundwater insecurity map. These would be addressed in 

the next phase of the project, where more localised analysis will be conducted. This was done as 

the datasets that constitute these models, e.g. groundwater intensive use and groundwater 

quality are only available at a local scale and in certain areas and cannot therefore be applied at 

a regional scale 
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