Plankton diversity in Pans in the Khakhea-Bray Trans boundary Aquifer

Chipo Mungenge¹, Ryan Wasserman¹,², Tatenda Dalu³,²

¹Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
²South African Institute for Aquatic Biodiversity, P Bag 1015, Makhanda 6140, South Africa
³Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
Introduction

• Temporary wetlands are systems characterized by frequent drying.

• The key environmental factors driving the structure of ecological communities in temporary wetlands are:
 1. duration
 2. timing
 3. frequency of wet & dry phases
Introduction

• Temporary wetlands are unique.
• They contain highly specialized assemblages of specialist, localised plant and animal species.
• Sustainable biodiversity in these systems is essential in providing ecosystem services.
Importance of temporary wetlands

1. Wildlife habitat
2. Source of water
3. Flood control
4. Water filtration
5. Cultural services
Biodiversity in temporary wetlands

Phytoplankton

Zooplankton
Aquatic ecosystems food web

- Phytoplankton
- Zooplankton
- Invertebrates
- Frogs
- Birds
Threats to temporary wetlands

- Ecosystem loss and degradation from urbanization and livestock
- Water extraction through irrigation
- Pollution
- Salinization (Climate change)
Problem Statement

• Plankton fauna from temporary wetlands remain poorly understood.

• Knowledge on plankton is important to know patterns in pan biodiversity to develop sound conservation policies.

• Plankton and micro benthos are a highly neglected part of temporary wetland science.
Research aim

• To characterise the species composition of plankton assemblages in the Khakhea-Bray Trans boundary Aquifer
Significance of the study

• Plankton as bio indicators.

• Understanding plankton diversity in the wetlands is necessary to identify future land use and management regimes.
Objectives

1. To determine benthic and pelagic phytoplankton diversity in the temporary wetlands across different sized pans.

2. To determine the zooplankton diversity in the Khakhea Bray Pan system.

3. To determine food web structures in the pan systems in the Khakhea Bray Trans boundary Aquifer.
Objectives

• To determine the germination success of phytoplankton at different salinity gradients.

• To determine the hatching success of zooplankton at different salinity gradients.
Study Area (Khakhea-Bray Trans boundary Aquifer)
Methods

1. Phytoplankton diversity (Benthic + Pelagic)

2. Zooplankton diversity (Benthic + Pelagic)

3. Food Web Structures (Stable isotope analysis)

4. Phytoplankton germination experiments at different salinity gradients

5. Zooplankton hatching experiments at different salinity gradients
1. Phytoplankton diversity

- Phytoplankton samples collected through horizontal tows of 20 µm phytoplankton net for 10m tow per pan during the wet and dry phase.
- Cell counts with inverted microscope
2. Zooplankton diversity

• Zooplankton samples collected through horizontal tows of 64 µm zooplankton net for 10m tow per pan during the wet and dry phase.

• Cell counts with combination of dissecting & inverted microscope
3. Food web structures

- Samples of organic and inorganic materials will be collected from the pans.

- Stable isotope analyses will be conducted at the University of Pretoria stable isotope lab using mass spectrometry.

- Stable isotopes will show the flow of energy through the food web.
4. Plankton hatching experiments

- Sediment samples collected from 10 dry pans in the Khakhea Bray basin.
- Propagule hatching
- Aquaria cultures with salinity treatments from 0.5 g L$^{-1}$ - 10 g L$^{-1}$.
- Sampling twice per week in each aquaria during a period of 28 days after rehydration to see hatching success.
Timeline

<table>
<thead>
<tr>
<th>Activity</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Proposal Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Write up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Proposal Writing started in Q3 of 2021.
- Data Collection spanned from Q1 to Q4 of 2022.
- Data Analysis started in Q1 of 2022 and continued to Q4 of 2022.
- Thesis Write up started in Q1 of 2023 and continued to Q4 of 2023.
Anticipated outputs

• Doctoral thesis
• Contribution towards the diversity database with plankton species from pan systems of Khakhea-Bray Transboundary Aquifer
• Publish 3 peer-reviewed articles
• Conference presentations
THANK YOU!!!!!!
TINOTENDA!!!!!!

Acknowledgements
- SADC GMI
- Aquatic Systems Research Group, School of Biology and Environmental Sciences UMP
- Wetland Ecology Lab, Department of Zoology and Entomology, RU

c.mungenge@gmail.com
@ChipoMungenge
Wetland Ecology Lab