SDC- GMI– SADC-GMI - Interventions face au risque lié à la sécheresse des eaux souterraines (GMI-GDRI)

Évaluation de la disponibilité en eau de surface

Août 2020
Le présent rapport émane du projet d'évaluation des domaines d'intervention prioritaires en matière de développement des ressources en eaux souterraines dans la région de la SADC, commandé par l'Institut de gestion des eaux souterraines de la Communauté de développement de l'Afrique australe (SADC-GMI) et exécuté par Pegasys.

INSTITUT DE GESTION DES EAUX SOUTERRAINES DE LA SADC (SADC-GMI)
Dean Street, Université de Free State
205 Nelson Mandela Drive, Bloemfontein, 9300
South Africa
E-mail info@sadc-gmi.org Site web : www.sadc-gmi.org

Équipe du projet :
Traci Reddy (Chef de projet), Pegasys
Kevin Pietersen (Chef d'équipe), L2K2 Consultants
Chiedza Musekiwa (Hydrogéologue), Council for Geoscience
Verno Jonker (Hydrologue), Zutari
Maryna Storie (experte en télédétection et systèmes d'information géographique) Deepti Maharaj (coordinatrice de projet), Pegasys
Zaheed Gaffoor, L2K2 Consultants
Luc Chevallier, L2K2 Consultants
Anya Eilers, Zutari
Erika Braune, Zutari

© SADC-GMI, 2020

Encadrés, Tableaux, Figures, Cartes, Photos et Illustrations tels que spécifiés

Ce rapport est accessible en ligne sur le site web : www.sadc-gmi.org

La désignation d'entités géographiques, l'utilisation de tout nom dans la présente publication et la présentation du matériel n'impliquent pas l'expression d'une opinion de la part du SADC-GMI ou de Pegasys concernant le statut légal d'un pays ou d'un territoire, ou d'une zone de son autorité, ou concernant la délimitation de ses frontières ou limites.
RÉSUMÉ ANALYTIQUE

Dans le but de déterminer les points chauds de la population de la SADC qui ont le plus besoin d'interventions en matière d’approvisionnement en eau domestique, et d'évaluer la viabilité de ces interventions proposées, il est nécessaire de quantifier d'abord la disponibilité de l'eau de surface et le risque à l'échelle régionale. Compte tenu des contraintes liées au projet, il a été convenu de suivre une méthodologie basée sur le Système d'Information Géographique (SIG). Une première évaluation a permis d'identifier différents ensembles de données matricielles sur les précipitations, le débit des cours d'eau et le ruissellement des bassins versants, qui sont à la fois fiables et disponibles gratuitement (voir le projet de rapport d’examen sommaire (SADC-GMI, 2020)). Dans le cadre de ce rapport, ces ensembles de données ont été validés par rapport à des ensembles de mesures globales du débit, du ruissellement et des précipitations. Ce processus de validation a montré que, en ce qui concerne le débit et le ruissellement, WaterGAP v2.2 était l’ensemble de données le plus fiable, et que WorldClim v2.1 était le plus fiable pour les précipitations. Les indices statistiques basés sur les données hydrométéorologiques sont couramment utilisés afin de quantifier les sécheresses et leur sévérité, et c'est la raison pour laquelle des analyses statistiques des ensembles de données ont été entreprises. Concernant le ruissellement, le débit et les précipitations, les indices ci-après ont été calculés grâce à des analyses de séries chronologiques : Valeurs annuelles moyennes, saisonnalité, indice de variation saisonnière, coefficient de variation et coefficient de ruissellement. Ensuite, les indices ont été normalisés et pondérés, et une analyse de sensibilité a été réalisée afin de déterminer l’impact des différents indices sur l’indice combiné de risque lié aux eaux de surface, et la carte finale de risque lié aux eaux de surface. Un processus de validation qualitative a montré que la carte de risque des eaux de surface était en bonne corrélation avec les cartes et rapports de sécheresse existants dans toute la SADC. La carte finale des risques liés aux eaux de surface et les cartes d’indices qui l’accompagnent seront utilisées de manière à identifier les interventions portant sur les eaux de surface dans les zones prioritaires.
TABLE DES MATIÈRES

RÉSUMÉ ANALYTIQUE ... ii
TABLE DES MATIÈRES ... iii
LISTE DES FIGURES .. v
LISTE DES TABLEAUX .. v
LISTE DES ACRONYMES .. vi

1 INTRODUCTION .. 1
 1.1 Contexte .. 1
 1.2 Objectif de ce rapport .. 1

2 ÉVALUATION DE LA DISPONIBILITÉ EN EAU DE SURFACE 2

3 COLLECTE ET VALIDATION DES DONNÉES ... 4
 3.1 Unités de bassin versant ... 4
 3.2 Données sur les précipitations .. 7
 3.2.1 Ensembles de données primaires... 8
 3.2.2 Ensemble de données de validation... 9
 3.2.3 Validation des données ... 11
 3.3 Données sur le ruissellement .. 12
 3.3.1 Ensembles de données primaires... 13
 3.3.2 Ensemble de données de validation... 14
 3.3.3 Validation des données ... 15

4 ANALYSE STATISTIQUE .. 16
 4.1 Valeurs annuelles moyennes ... 16
 4.2 Saisonnalité ... 16
 4.3 Indice de variabilité saisonnière .. 16
 4.4 Coefficient de variation .. 17
 4.5 Coefficient de ruissellement ... 17

5 NORMALISATION DE L’INDICE ... 18
 5.1 Méthodes de normalisation .. 18
5.2 Normalisation des indices statistiques 18

6 PONDÉRATION DES INDICES ET ANALYSE DE SENSIBILITÉ 20

7 FINALE DES RISQUES ..22

7.1 Carte finale des risques liés aux eaux de surface 22

7.2 Validation de la carte des risques liés aux eaux de surface 23

8 CONCLUSION ET VOIE À SUIVRE 25

9 Références..26

Annexe A : MÉTADONNÉES DES SOURCES SANS CARTE 29

Annexe B : Indices statistiques..31

B1 : Valeurs annuelles moyennes ..31

B2 : Saisonnalité ...34

B3 : Indice de variabilité saisonnière ..36

B4 : Coefficient de variation ..38

B5 : Coefficient de ruissellement ..40
LISTE DES FIGURES

Figure 2-1 : Méthodologie suivie afin d'établir la carte de risque de sécheresse des eaux de surface. 3
Figure 3-1 : Sous-bassin HydroBASIN du niveau 8 du bassin versant 6
Figure 3-2 : Unité de bassin versant (sous-bassin HydroBASIN de Niveau 8) 7
Figure 3-3 : Stations de surveillance des jauges mondiales du GPCC. Données consultées sur (https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre) 9
Figure 3-4 : Stations d’observation de la NOAA dans la région de la SADC 11
Figure 3-5 : Comparaison des données pluviométriques de la NOAA et de WorldClim (échantillon de 36 stations) 12
Figure 3-6 : Stations d’observation du GRDC dans la région de la SADC 14
Figure 4-1 : Indice de variabilité saisonnière (Is) 17
Figure 6-1 : Impact de la pondération de chaque indice sur l’indice combiné de risque des eaux de surface 21
Figure 7-1 : Carte des risques liés aux eaux de surface 22
Figure 3-3 : Anomalie d’humidité du sol février 2019 (https://earthobservatory.nasa.gov/images/144704/drought-harms-corn-crops-in-southern-africa) 24

LISTE DES TABLEAUX

Tableau 3-1 : Sous-bassins HydroBASINS de niveau 7 et de niveau 8 par pays 5
Tableau 3-2 : Résumé des jeux de données sur les précipitations mondiales qui ont été pris en compte 7
Tableau 3-3 : Résumé des jeux de données sur le ruissellement global qui ont été pris en compte 12
Tableau 5-1 : Normalisation des indices de précipitation 19
Tableau 5-2 : Normalisation des indices de décharge 19
Tableau 5-3 : Normalisation des indices de ruissellement 19
Tableau 6-1 : Analyse de sensibilité ... 20
Tableau 6-2 : Pondération finale des indices des eaux de surface 21
<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIRPS</td>
<td>Groupe de précipitations infrarouge des risques climatiques avec station</td>
</tr>
<tr>
<td>CRU</td>
<td>Unité de recherche climatique</td>
</tr>
<tr>
<td>CoV</td>
<td>Coefficient de variation</td>
</tr>
<tr>
<td>RDC</td>
<td>République démocratique du Congo</td>
</tr>
<tr>
<td>FAO</td>
<td>Organisation des Nations Unies pour l’alimentation et l’agriculture</td>
</tr>
<tr>
<td>GDR</td>
<td>Risque lié à la sécheresse des eaux souterraines</td>
</tr>
<tr>
<td>GDRI</td>
<td>Intervention face au risque lié à la sécheresse des eaux souterraines</td>
</tr>
<tr>
<td>GIP</td>
<td>Portail d’information sur les eaux souterraines</td>
</tr>
<tr>
<td>SIG</td>
<td>Système d’informations géographiques</td>
</tr>
<tr>
<td>GPCC</td>
<td>Centre mondial de climatologie des précipitations</td>
</tr>
<tr>
<td>GPCP</td>
<td>Projet mondial de climatologie des précipitations</td>
</tr>
<tr>
<td>GRDC</td>
<td>Centre mondial de données sur le ruissellement</td>
</tr>
<tr>
<td>GSIM</td>
<td>Archives mondiales d’indices et de métadonnées sur le débit des cours d’eau</td>
</tr>
<tr>
<td>GSWP</td>
<td>Projet mondial sur l’humidité des sols</td>
</tr>
<tr>
<td>MCA</td>
<td>Analyse multi-critères</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration (« Administration nationale de l’aéronautique et de l’espace des États-Unis »)</td>
</tr>
<tr>
<td>SADC-GIP</td>
<td>Portail d’information sur les eaux souterraines de la SADC</td>
</tr>
<tr>
<td>SADC-GMI</td>
<td>Institut de gestion des eaux souterraines de la Communauté de développement de l’Afrique australe</td>
</tr>
<tr>
<td>SADC</td>
<td>Communauté de développement de l’Afrique australe</td>
</tr>
<tr>
<td>SCO</td>
<td>Indice de précipitation standard</td>
</tr>
<tr>
<td>OMM</td>
<td>Organisation météorologique mondiale</td>
</tr>
<tr>
<td>WWF</td>
<td>Fonds mondial pour la nature</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Contexte
L’Institut de gestion des eaux souterraines de la Communauté de développement de l’Afrique australe (SADC-GMI) est en train de mettre en œuvre le projet : Évaluation des zones d’intervention prioritaires pour le développement des ressources en eaux souterraines dans la région de la Communauté de développement de l’Afrique australe (SADC GMI-GDRI), qui vise à mettre en avant le rôle des eaux souterraines dans la garantie de l’approvisionnement en eau pendant les périodes de sécheresse et à fournir une planification, à formuler des recommandations et à gérer de manière proactive les systèmes d’eaux souterraines et de surface. Le projet vise à identifier les zones sujettes à la sécheresse dans la région de la SADC et fournir des informations sur la disponibilité des ressources en eaux souterraines et de surface.

Le projet utilise les données géospatiales, hydrométéorologiques et hydrogéologiques existantes et implique une évaluation pratique des ressources en eaux souterraines et de surface qui peuvent être rapidement mobilisées de manière à soutenir les investissements durables en matière d’approvisionnement en eau domestique dans les zones à haut risque de sécheresse des eaux souterraines et à accès limité à l’approvisionnement en eau domestique sûre. L’étude identifiera finalement les interventions d’infrastructure les plus adéquates et rentables dans les zones qui en ont le plus besoin.

1.2 Objectif de ce rapport
Une approche basée sur le Système d’Information Géographique (SIG) est suivie afin d’identifier les zones d’interventions prioritaires en matière d’approvisionnement en eau. Cette approche se compose essentiellement de trois éléments distincts : une analyse multicritères (MCA) permettant de déterminer les points sensibles de vulnérabilité de la population, une analyse révisée du risque de sécheresse des eaux souterraines (GDR) et une évaluation de la disponibilité des eaux de surface.

Ce rapport se concentre sur l’évaluation de la disponibilité des eaux de surface. Il examine les ensembles de données utilisés dans l’évaluation, décrit la méthodologie qui a été suivie afin de générer une carte des risques liés aux eaux de surface et présente les résultats de l’analyse. Cette évaluation a impliqué les tâches clés suivantes :

- collecte de données matricielles de séries temporelles ;
- validation des données matricielles à l’aide de données ponctuelles ;
- développement d’indices des eaux de surface ;
- normalisation des indices des eaux de surface ;
- pondération des indices des eaux de surface normalisés dans le but de produire une carte des risques liés aux eaux de surface.
2 ÉVALUATION DE LA DISPONIBILITÉ EN EAU DE SURFACE

Les sécheresses peuvent découler d'une série de facteurs hydrométéorologiques qui suppriment les précipitations et/ou limitent la disponibilité des eaux de surface et des eaux souterraines, provoquant des conditions nettement plus sèches que la normale et entraînant une pénurie d'eau (Svoboda & Fuchs, 2016). Les sécheresses peuvent être caractérisées en termes de localisation, de sévérité et de durée. Les indices de sécheresse sont généralement utilisés afin de quantifier les informations hydrométéorologiques et finalement d'identifier les emplacements, la sévérité et la durée des sécheresses (Nagarajan, 2009).

La Figure 2-1 illustre la méthodologie qui a été suivie pour évaluer la disponibilité des eaux de surface et dresser la carte du risque lié à la sécheresse des eaux de surface, et les chapitres ultérieurs de ce rapport suivront la même méthodologie.

Des ensembles de données de séries chronologiques sur les précipitations, le débit des cours d'eau et le ruissellement des bassins versants ont été collectés et validés (Section 0). Des données mondiales sur les bassins versants délimités par le SIG ont également été recueillies. Ces ensembles de données mondiales ont été sélectionnés sur la base des critères suivants :

- Aucune contribution financière requise (librement disponible)
- Validé et/ou calibré avec des données observées (pas seulement en utilisant des données satellites)
- Couvrant la totalité ou la majorité des pays de la SADC
- Données s'étendant sur une période d'au moins 30 ans
- Références dans des revues à comité de lecture
- Dépositaires de données crédibles

A partir de ces données, des indices statistiques pertinents ont été calculés pour quantifier les caractéristiques hydro-météorologiques aux échelles appropriées (Section 4). Ces indices comprennent les valeurs annuelles moyennes, la saisonnalité, l'indice de variabilité saisonnière, le coefficient de variation et le coefficient de ruissellement. Ces indices ont été calculés par unité de bassin versant, à une échelle qui a été convenue dans la section 3.

Les indices ont ensuite été normalisés (Section 5) et pondérés (Section 6) pour produire un indice combiné de risque de sécheresse des eaux de surface.

Finalement, l'indice combiné de sécheresse des eaux de surface a été utilisé pour produire une carte de risque des eaux de surface, qui a été validée par rapport à d'autres cartes de risque de sécheresse (Section 7).
• Unités de bassin versant
• Données sur les précipitations
• Données de ruissellement et de décharge

- Valeurs annuelles moyennes
- Saisonnalité
- Indice de variabilité saisonnière
- Coefficient de variation
- Coefficient d’écoulement

Collecte et validation des données (section 3)

Analyse statistique (section 4)

Normalisation des indices (section 5)

Pondération des indices et analyse de sensibilité (section 6)

Carte des risques liés aux eaux de surface (section 7)

Figure 2-1 : Méthodologie suivie afin d’établir la carte de risque de sécheresse des eaux de surface.
3 COLLECTE ET VALIDATION DES DONNÉES

En prenant en considération le délai limité du projet, des ensembles de données globales applicables et librement disponibles, de qualité, d'échelle, de récencé/date, de format et de projection appropriés ont été utilisés. Les détails concernant les différents jeux de données étudiés et évalués sur la base des critères ci-dessus sont fournis dans le « Rapport d’examen sommaire préliminaire » (SADC, 2020) et résumés dans les sections qui suivent.

Note : Certains ensembles de données, y compris les données spatiales, sont utilisés dans les trois composantes d’analyse décrites dans la section 1.2 - c’est-à-dire que certaines couches de données sont pertinentes à la cartographie de la vulnérabilité, à l’analyse révisée du RDA et à l’évaluation des eaux de surface. L’utilisation des couches de données n’est par conséquent pas exclusive à l’une ou l'autre des composantes du projet.

3.1 Unités de bassin versant

Les données globales sur les précipitations, le ruissellement et le débit se présentent sous la forme de jeux de données matricielles, à des échelles variables. Dans le but de combiner ces ensembles de données pour produire une carte de risque, ces ensembles de données matricielles doivent être traités à une échelle uniforme. Etant donné la nature de l’hydrologie des eaux de surface et des bassins versants, des polygones « unité de bassin versant » sont utilisés pour créer une uniformité pour l’analyse statistique. Ainsi, l’analyse statistique présentée dans la section 4 sera effectuée par unité de captage.

Les données et cartes hydrologiques basées sur les dérivées d’élévation SHuttle à échelle multiple (HydroSHEDS) sont un produit cartographique qui fournit des informations hydrographiques pour des applications à l’échelle régionale et mondiale. HydroSHEDS a été élaboré par le Programme scientifique de conservation du Fonds mondial pour la nature (WWF), en partenariat et en collaboration avec l’U.S. Geological Survey (USGS), le Centre international d’agriculture tropicale (CIAT), le Nature Conservancy (TNC) et d’autres organismes. HydroSHEDS est basé sur des données d’élévation à haute résolution obtenues à partir de la Shuttle Radar Topography Mission (SRTM) (Linke, et al., 2019).

La base de données HydroSHEDS s’appuie entre autres sur le recueil HydroATLAS, les fichiers de forme des bassins versants HydroBASINS et le réseau fluvial HydroRIVERS.

HydroATLAS fournit un recueil de données entièrement mondial qui rassemble et présente un large éventail de caractéristiques hydro-environnementales pertinentes à l’échelle du sous-bassin et du fleuve.

HydroRIVERS fournit une délimitation du réseau fluvial mondial dérivée des données HydroSHEDS à une résolution de 15 secondes d’arc.

HydroBASINS présente une série de couches de polygones qui ont été dérivées des données HydroSHEDS à une résolution de 15 secondes d’arc et qui représentent les limites des bassins versants et les délimitations des sous-bassins à une échelle globale (Lehner, 2014). Ces sous-bassins fournissent une couverture mondiale de bassins versants de taille cohérente et hiérarchiquement imbriqués à différentes échelles (de quelques dizaines à des millions de kilomètres carrés), soutenus par un schéma de codage qui
permet d'analyser la topologie des bassins versants, comme la connectivité amont et aval. Un bassin versant de niveau 1 distingue le continent, le niveau 2 divise les continents en 9 sous-unités et au niveau 3, les plus grands bassins versants de chaque continent commencent à se détacher. À partir du niveau 4, les plus grands bassins fluviaux sont décomposés en affluents à l'aide de données d'élévation à haute résolution (Lehner, 2014) jusqu'au niveau 12. À partir de l'ensemble de données HydroBASINS, les bassins versants ont été extraits sur la base des sous-bassins de niveau 7 et de niveau 8 respectivement.
Le tableau 3-1 montre le nombre de bassins versants par pays de la SADC. Les bassins versants de niveau 8 ont été considérés comme plus appropriés pour cette analyse, en raison de leur plus haute résolution, et assureront la qualité des données sans compromettre le temps de calcul (Figure 3-1). Les sous-bassins de niveau 8 sont appelés « unités de captage » dans ce rapport. Une unité de captage typique est illustrée à la Figure 3-2.

Tableau 3-1 : Sous-bassins HydroBASINS de niveau 7 et de niveau 8 par pays

<table>
<thead>
<tr>
<th>Pays</th>
<th>Nombre de sous-bassins de niveau 8</th>
<th>Nombre de sous-bassins de niveau 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>1840</td>
<td>599</td>
</tr>
<tr>
<td>Botswana</td>
<td>902</td>
<td>318</td>
</tr>
<tr>
<td>Comores</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>République démocratique du Congo</td>
<td>3392</td>
<td>873</td>
</tr>
<tr>
<td>Lesotho</td>
<td>89</td>
<td>24</td>
</tr>
<tr>
<td>Madagascar</td>
<td>902</td>
<td>264</td>
</tr>
<tr>
<td>Malawi</td>
<td>224</td>
<td>90</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1330</td>
<td>427</td>
</tr>
<tr>
<td>Namibie</td>
<td>1238</td>
<td>441</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>1829</td>
<td>618</td>
</tr>
<tr>
<td>Swaziland</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>RU de Tanzanie</td>
<td>1498</td>
<td>374</td>
</tr>
<tr>
<td>Zambie</td>
<td>1264</td>
<td>419</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>657</td>
<td>187</td>
</tr>
<tr>
<td>Total</td>
<td>15202</td>
<td>4652</td>
</tr>
</tbody>
</table>
Figure 3-1 : Sous-bassin HydroBASIN du niveau 8 du bassin versant
3.2 Données sur les précipitations

Un certain nombre d'ensembles de données sur les précipitations à l'échelle mondiale, allant des enregistrements des précipitations observées à des endroits précis aux estimations maillées des précipitations provenant de satellites ou de méthodes d'estimation météorologiques avancées, sont facilement disponibles. Les principaux ensembles de données qui ont été évalués sont brièvement résumés dans le tableau 3-2. Un tableau plus complet est joint en annexe A, où les références et les commentaires connexes sont également fournis.

Dans les sections suivantes, les ensembles de données sont brièvement discutés - en particulier leur pertinence pour une utilisation dans l'évaluation de la disponibilité des eaux de surface. Une distinction est faite entre les jeux de données primaires et les jeux de données de validation.

Tableau 3-2 : Résumé des jeux de données sur les précipitations mondiales qui ont été pris en compte

<table>
<thead>
<tr>
<th>Type de données</th>
<th>Ensemble de données</th>
<th>Années disponibles</th>
<th>Résolution temporelle</th>
<th>Résolution spatiale</th>
<th>Utilisation dans ce projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basé sur les jauges</td>
<td>GPCC</td>
<td>1901-2010</td>
<td>Journalier, mensuel</td>
<td>0.5°x 0.5°</td>
<td>Validation possible</td>
</tr>
<tr>
<td></td>
<td>CRU</td>
<td>1901- proche du présent</td>
<td>mensuelle</td>
<td>0.5°x 0.5°</td>
<td>Validation possible</td>
</tr>
<tr>
<td>Par satellite</td>
<td>GPCP</td>
<td>1979 - 2010</td>
<td>Journalier, mensuel</td>
<td>2.5°x 2.5°</td>
<td>Ensemble de données primaires possibles sur les</td>
</tr>
<tr>
<td>Données primaires</td>
<td>Durée</td>
<td>Format</td>
<td>Ensemble de données primaires possibles sur les précipitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIRPS</td>
<td>1981-2018</td>
<td>Journalier, mensuel</td>
<td>0,05° x 0,05°</td>
<td>Ensemble de données primaires possibles sur les précipitations</td>
<td></td>
</tr>
<tr>
<td>WorldClim</td>
<td>1960-2018</td>
<td>mensuelle</td>
<td>0,5° x 0,5°</td>
<td>Ensemble de données primaires possibles sur les précipitations</td>
<td></td>
</tr>
</tbody>
</table>
3.2.1 Ensembles de données primaires

3.2.1.1 Série temporelle WorldClim raster
La base de données WorldClim (Fick & Hijmans, 2017) est une base de données de surfaces climatiques mondiales grillées interpolées à une résolution spatiale de 0,5°. Elle est considérée comme l'un des ensembles de données mondiales les plus populaires, fournissant des données inestimables aux zones pauvres en données (Wango, et al., 2018 ; Fick & Hijmans, 2017). WorldClim v1.4 contient des données climatiques mensuelles moyennes en grille pour la période allant de 1960 à 1990, tandis que les données mensuelles historiques de 1960 à 2018 sont disponibles dans le jeu de données WorldClim v2.1 mis à jour.

Le modèle WorldClim v2.1 a utilisé les données de la série chronologique quadrillée la plus récente (CRU TS-4.03) de l'unité de recherche sur le climat (CRU) de l'université d'East Anglia pour la correction des erreurs. Le CRU est largement reconnu comme l'une des principales institutions mondiales concernées par l'étude du changement climatique naturel et anthropique (Harris, et al., 2020).

WorldClim utilise des données dérivées de satellites (telles que l'élévation et la couverture végétale) et des données de mesures. (Les données des stations d'observation sont interpolées à l'aide d'algorithme de lissage à plaques minces et combinées avec la base de données dérivée du satellite). La base de données WorldClim comprend les informations de 47 554 stations de précipitation, qui ont été utilisées pour la validation (Fick & Hijmans, 2017) et l'interpolation avec les données satellites afin de créer un ensemble de données complet. Selon Wangi et al (2018), les ensembles de données WorldClim offrent une corrélation acceptable avec les données des stations, y compris la variation temporelle et saisonnière. Les incertitudes relatives aux données se sont principalement produites dans les zones où les données de station sont peu nombreuses ainsi que dans les zones présentant une forte variation de l'altitude (Hijmans, et al., 2005).

3.2.1.2 CHIRPS
CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) est un ensemble de données dérivées d'un satellite, financé par l'USAID, la NASA et la NOAA. L'ensemble de données CHIRPS utilise des techniques d'interpolation ainsi que de longues périodes d'estimations de précipitations basées sur des observations infrarouges de la durée des nuages froids (Funk, et al., 2015). L'algorithme CHIRPS a appliqué des méthodes de mélange entre les informations dérivées des satellites, les informations des jauges et les observations infrarouges de la durée des nuages froids pour créer un ensemble de données pluviométriques quasi-mondiales sur plus de 35 ans qui s'étendent de 50°S à 50°N, y compris toutes les longitudes. L'ensemble de données a une haute résolution spatiale de 0,05° et présente une série chronologique de précipitations quotidiennes, pentadales et mensuelles de 1981 à 2018. Les données CHIRPS ont été appliquées afin de soutenir la surveillance de la sécheresse ainsi que pour analyser les changements dans les précipitations dans de nombreux pays africains, y compris dans des zones où les données sont rares comme le Sahel (Dinku, et al., 2018 ; Badr, et al., 2016 ; Funk, et al., 2015).

3.2.1.3 GPCP
L'ensemble de données fusionnées mondiales le plus largement reconnu (Sun et al., 2017) est l'ensemble
de données du Global Precipitation Climatology Project (GPCP), publié pour la première fois en 1997. Le GPCP est basé sur la combinaison séquentielle de données micro-ondes, infrarouges ainsi que de données de jauge. Les données satellitaires sont obtenues auprès de la National Oceanic and Atmospheric Administration (NOAA). L'algorithme implique la fusion de plusieurs ensembles de données satellitaires sur les précipitations, par exemple l'indice de précipitation des satellites environnementaux opérationnels géostationnaires (GPI), l'indice de précipitation du rayonnement à grande longueur d'onde sortant (OPI) et le capteur spécial micro-ondes/imageur (SSM/I). L'ensemble de données dérivées
fusionne les données satellitaires avec les données des pluviomètres et ajuste les estimations satellitaires au biais des pluviomètres (Sun et al., 2017). L'ensemble de données GPCP a une résolution spatiale de 2,5° et contient des données mensuelles de 1979 à nos jours. Selon Wang (2020), le GPCP est utile pour la validation des modèles ainsi que pour l'analyse des précipitations mondiales. Il a été utilisé et référencé dans un certain nombre d'études et de revues, et largement utilisé pour des études dans la SADC (Driver, 2014 ; Masih, et al., 2014 ; Malisawa & Rautenbach, 2012).

3.2.2 Ensemble de données de validation

3.2.2.1 GPCC
Le GPCC (Global Precipitation Climatology Centre) est l'un des ensembles de données sur les précipitations basés sur des jauges quadrillées les plus utilisés et les plus référencés dans les études et les revues universitaires (Sun et al., 2017). Le GPCC a été créé en 1989 à la demande de l'Organisation météorologique mondiale (OMM) et est actuellement géré par le Deutscher Wetterdienst (DWD). Le GPCC possède le plus grand ensemble de données et couvre la plus grande période de temps, entre 1901 et 2013, avec des données mensuelles provenant de plus de 85 000 stations dans le monde entier. Diverses institutions, telles que l'OMM, la FAO et l'UNESCO, utilisent différents produits de données du GPCC pour la recherche sur l'eau et le climat (Deutscher Wetterdienst, 2018). Le calcul des ensembles de données de précipitations maillées comprend trois étapes principales (Rudolf & Schneider, 2005) : l'interpolation des stations aux points de grille réguliers de 0,5° ; le calcul des précipitations moyennes de surface pour les cellules de grille ; ainsi que l'évaluation des précipitations moyennes de surface pour des cellules de grille plus grandes ou d'autres zones (par exemple, les bassins fluviaux). Une méthode de pondération par interpolation empirique est suivie afin d'extrapoler les données de la jauge aux points de grille. Bien que cette forme de mesure soit relativement précise et fiable, et que la grande étendue des données temporelles soit utile au calcul des précipitations annuelles moyennes et à la prévision des impacts climatiques, la faible couverture

![Figure 3-3 : Stations de surveillance des jauges mondiales du GPCC. Données consultées sur (https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre)](https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre)
des stations sur l’Afrique équatoriale implique une mauvaise précision des données dans certaines zones (Schneider, et al., 2016). La figure 3-3 présente les stations de surveillance des jauge mondiales du GPCC.
3.2.2.2 CRU

L’unité de recherche sur le climat (CRU) de l’université d’East Anglia est largement reconnue comme l’une des principales institutions mondiales concernées par l’étude du changement climatique naturel et anthropique (Harris, et al., 2020). L'ensemble de données de la série chronologique maillée de l'unité de recherche sur le climat (CRU TS) est dérivé par interpolation (méthode de pondération de la distance angulaire) des anomalies climatiques mensuelles à partir des données d'observation des stations. La méthode de pondération de la distance angulaire permet une meilleure traçabilité entre chaque valeur de la grille et les données d'observation d'entrée. Le CRU fournit des données mensuelles à une résolution spatiale de 0,5° et s’étend de 1901 à 2018 (Harris, et al., 2020). Les données mensuelles de précipitations du CRU ont été obtenues sous les auspices des agences météorologiques nationales (AMN), de l’OMM, du CRU, du Centro International de Agricultura Tropical, de l’Organisation des Nations Unies pour l’alimentation et l’agriculture (FAO) et d’autres organismes (Sun et al., 2017). L’objectif primordial du CRU était de présenter une couverture mondiale complète. Pour ce faire, les valeurs manquantes des stations sont comblées : a) par anomalisation des séries avec les données des stations correspondantes entre 1961 et 1990 ; b) par application de la méthode de pondération de la distance angulaire pour interpoler les valeurs en points de grille ; puis c) par la conversion de la grille d’anomalies en valeurs réelles. Bien que ce processus puisse entraîner une diminution de la variance des données climatiques, la base de données du CRU peut toujours être utilisée pour l’analyse des tendances mondiales et régionales (Harris, et al., 2020). La diminution de la variance aura un impact minimal sur les moyennes annuelles utilisées dans ce projet.

3.2.2.3 Points de données observés par la NOAA

La National Oceanic and Atmospheric Administration (NOAA) disposait auparavant de trois centres de données, à savoir le National Climatic Data Centre, le National Geophysical Data Centre et le National Oceanographic Data Centre. Ces trois centres de données ont fusionné au sein des National Centres for Environmental Information (NCEI), faisant du NCEI le plus grand fournisseur de données météorologiques et climatiques au monde. Les observations terrestres sont recueillies à partir d’instruments situés sur tous les continents (NOAA, 2020). La NCEI fournit un large éventail de services associés aux observations terrestres. Au nombre de ces services figurent la collecte de données, le contrôle de la qualité, l’archivage et l’élimination des biais associés à des facteurs tels que l’urbanisation et les changements d’instrumentation au fil du temps. Des données sur des échelles de temps infra-horaires, horaires, quotidiennes, mensuelles, annuelles et pluriannuelles sont disponibles. Cependant, dans les régions de la SADC où les données sont rares, notamment en Angola, en République démocratique du Congo, à Madagascar et au Mozambique, les stations d’observation peuvent présenter des données inexactes et doivent donc être utilisées avec prudence. La figure 3-4 présente les stations d’observation de la NOAA dans la région de la SADC.
3.2.3 Validation des données

Comme décrit dans le « Rapport d’examen sommaire préliminaire » (SADC-GMI, 2020), les ensembles de données ci-dessus ont été évalués en fonction de divers critères et, en fin de compte, WorldClim a été sélectionné comme l’ensemble de données de précipitation préféré pour l’évaluation de la disponibilité des eaux de surface dans le cadre de ce projet.

La validation des données maillées de WorldClim v2.1 dans la SADC a été effectuée en comparant les données de WorldClim avec les données de précipitation observées dans l’ensemble de données NOAA aux points de données observés basés sur la précipitation annuelle moyenne. Un total de 126 stations NOAA ont été sélectionnées à travers la région SADC, avec au moins 3 stations dans chaque pays, sous réserve des stations disponibles. En utilisant une méthode d’échantillonnage de points matriciels, les valeurs matricielles des précipitations moyennes annuelles ont été extraites à chaque point de données d’observation. La comparaison entre les précessiations moyennes annuelles de WorldClim v2.1 et les précipitations moyennes annuelles de la NOAA est présentée dans la figure 3-5. À 66 endroits, les valeurs de précipitations moyennes annuelles de la NOAA et de WorldClim v2.1 sont à moins de 10 %. Les stations où la comparaison est moins bonne se trouvent dans les pays d’Afrique centrale tels que l’Angola, la
Tanzanie, la République démocratique du Congo et Madagascar. Cependant, il est supposé que le jeu de données WorldClim v2.1 est plus fiable que les données des stations NOAA dans les pays mentionnés ci-dessus.
3.3 Données sur le ruissellement

Un certain nombre d'ensembles de données mondiales sur le ruissellement et le débit des bassins versants sont facilement disponibles. Ces données peuvent être classées en trois catégories : celles basées sur des jauges, celles basées sur des modèles et/ou des simulations, ainsi que les ensembles de données de réanalyse. Les principaux ensembles de données qui ont été évalués sont brièvement résumés dans le tableau 3-3. Un tableau plus complet est joint en annexe A où les références et les commentaires associés sont également fournis.

Dans les sections suivantes, les ensembles de données sont brièvement discutés - en particulier leur pertinence pour une utilisation dans l'évaluation de la disponibilité des eaux de surface. Une distinction est faite entre les jeux de données primaires et les jeux de données de validation.

Tableau 3-3 : Résumé des jeux de données sur le ruissellement global qui ont été pris en compte

<table>
<thead>
<tr>
<th>Type de données</th>
<th>Ensemble de données</th>
<th>Années disponibles</th>
<th>Résolution temporelle</th>
<th>Résolution spatiale</th>
<th>Utilisation dans ce projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basé sur les mesures</td>
<td>GRDC</td>
<td>1901 - proche du courant</td>
<td>Journalier, mensuel</td>
<td>Données ponctuelles</td>
<td>Validation et correction de biais possibles</td>
</tr>
<tr>
<td>Basé sur un modèle</td>
<td>WaterGAP</td>
<td>1901-2016</td>
<td>Moyenne mensuelle</td>
<td>0.25°x0.25°</td>
<td>Ensemble de données primaires possibles sur le ruissellement</td>
</tr>
</tbody>
</table>
Évaluation de la disponibilité en eau de surface

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUN</td>
<td>1901-2014</td>
<td>Toutes les 3 heures</td>
<td>0.5°x0.5°</td>
<td>Ensemble de données primaires possibles sur le ruissellement</td>
</tr>
<tr>
<td>GeoSFM</td>
<td>1998-2005</td>
<td>mensuelle</td>
<td>0.25°x0.25°</td>
<td>Ensemble de données primaires possibles sur le ruissellement</td>
</tr>
</tbody>
</table>
3.3.1 Ensembles de données primaires

3.3.1.1 WaterGAP

3.3.1.2 GRUN
L’ensemble de données GRUN contient une reconstruction globale quadrillée de données chronologiques mensuelles sur le ruissellement. Dans le contexte du modèle GRUN, le ruissellement est défini par Ghiggi et al. (2019) comme « la quantité d’eau drainée d’une unité terrestre donnée (c’est-à-dire une cellule de grille) qui finit par entrer dans le système fluvial, y compris l’écoulement des eaux souterraines et la fonte des neiges ». Les observations in situ du débit des cours d’eau provenant de l’archive Global Streamflow Indices and Metadata (GSIM) et de l’ensemble de données GRDC ont été utilisées pour entraîner un algorithme d’apprentissage automatique qui prédit les taux de ruissellement mensuels en fonction des précipitations et de la température antécédentes provenant de l’ensemble de données météorologiques Global Soil Wetness Project Phase 3 (GSWP3) (Ghiggi, et al., 2019) Les données de ruissellement ont une résolution mensuelle avec une résolution spatiale de 0,5°, couvrant la période de 1901 à 2014. Le modèle a tendance à surestimer le ruissellement dans les régions arides telles que les zones d’Afrique australe (Ghiggi, et al., 2019).

3.3.1.3 GeoSFM
Un autre ensemble de données de ruissellement basé sur un modèle est généré avec le modèle géospatial d’écoulement fluvial (GeoSFM). Le système de modélisation géospatiale de l’écoulement des cours d’eau est paramétré avec des données globales sur le terrain, les sols et la couverture terrestre et fonctionne avec des ensembles de données sur les précipitations et l’évapotranspiration dérivés de satellites (Asante, et al., 2008). L’ensemble de données est créé en utilisant des méthodes linéaires simples pour transférer l’eau à travers les phases d’écoulement souterrain, terrestre et fluvial. Les débits mensuels résultants sont exprimés en termes d’écart types par rapport au débit annuel moyen et présentés à une résolution...
3.3.2 Ensemble de données de validation

3.3.2.1 GRDC

Le Centre mondial de données sur le ruissellement (GRDC) est un centre de données international fonctionnant sous les auspices de l'Organisation météorologique mondiale (OMM). Son ensemble de données est une collection de données historiques de débit quotidien et mensuel moyen dont la qualité a été contrôlée. Des séries chronologiques de données sur le débit des rivières sont disponibles dans plus de 9 900 stations réparties dans 159 pays. La base de données sur les débits en Afrique australe de SA FRIEND constitue un sous-ensemble de données du GRDC et peut également être obtenue sur le site Web du GRDC. La base de données sur les débits en Afrique australe a été créée entre 1992 et 1997 de manière à soutenir la modélisation des précipitations et des ruissellements. Elle contient des séries chronologiques de données sur les débits provenant d'environ 850 stations d'Afrique australe. Les données doivent être demandées à l'adresse grdc@bafg.de. En général, cependant, les stations sont limitées dans les pays en développement.

Pour ce projet, les données de 881 stations de la SADC ont été obtenues auprès du GRDC (Figure 3-6). La durée moyenne des enregistrements est de 44 ans et la plupart des stations de ruissellement disposent de séries chronologiques quotidiennes et mensuelles. Le GRDC a été largement utilisé dans des documents de recherche et des projets dans toute la région de la SADC, y compris la modélisation des précipitations et du ruissellement dans des régions où les données sont rares, comme la RDC (Tshimanga & Hughes, 2014) et la recherche à l'échelle du bassin, comme dans le bassin du fleuve Zambèze (McCartney, et al., 2013).
Figure 3-6 : Stations d’observation du GRDC dans la région de la SADC
3.3.3 Validation des données

Comme décrit dans le projet de rapport d’examen sommaire (SADC-GMI, 2020), les ensembles de données ci-dessus ont été évalués et appréciés en fonction de divers critères. Bien que chaque jeu de données évalué présente des lacunes, notamment dans les zones où les données sont rares, WaterGap v2.2 a été sélectionné comme le jeu de données de ruissellement préféré pour l’évaluation de la disponibilité des eaux de surface dans le cadre de ce projet. Bien que le dépositaire de WaterGap v2.2 ait mentionné que des surestimations pouvaient se produire dans les zones où les données sont rares, aucune surestimation n’a été observée lors de l’analyse des données. Seules les stations dont les bassins versants se situaient à moins de 20 % des zones des unités de captage ont été utilisées pour la validation. Il s'est avéré que les stations du GRDC présentaient des lacunes dans leurs données de surveillance, en particulier dans les pays où les données sont peu abondantes. Sur la base de la validation des stations comparables, et des diverses applications réussies du jeu de données WaterGAP dans de nombreux bassins fluviaux à travers le monde, qui comprenaient une validation précise, il a été décidé d'utiliser WaterGAP pour cette analyse.

ANALYSE STATISTIQUE Les indices statistiques basés sur les données hydrométéorologiques sont couramment utilisés afin de quantifier les sécheresses sur le paysage pour toute période donnée (Svoboda & Fuchs, 2016) et fournir des représentations numériques de la gravité de la sécheresse. Par conséquent, les stations sont généralement limitées dans les pays en développement. grdc@bafg.de Pour ce projet, les données de 881 stations de la SADC ont été obtenues auprès du GRDC (Figure 3-6). La durée moyenne des enregistrements est de 44 ans et la plupart des stations de ruissellement disposent de séries chronologiques quotidiennes et mensuelles. Le GRDC a été largement utilisé dans des documents de recherche et des projets dans toute la région de la SADC, y compris la modélisation des précipitations et du ruissellement dans des régions où les données sont rares, comme la RDC (Tshimanga & Hughes, 2014) et la recherche à l'échelle du bassin, comme dans le bassin du fleuve Zambèze (McCartment, et al., 2013).

Figure 3-6 : Stations d'observation du GRDC dans la région de la SADC Validation des données Comme décrit dans le projet de rapport d’examen sommaire (SADC-GMI, 2020), les ensembles de données ci-dessus ont été évalués et appréciés en fonction de divers critères. Cependant, les stations dont le bassin versant de la station GRDC n'est pas comparable à celui de l'unité de bassin versant n'ont pas été utilisées dans la validation, car le débit et le ruissellement ne seraient pas non plus comparables. En ce qui concerne toutes les stations, les zones de captage et le débit annuel moyen de seulement 20 % des emplacements de validation correspondaient étroitement (à moins de 10 %). Seules les stations dont les bassins versants se situaient à moins de 20 % des zones des unités de captage ont été utilisées pour la validation. Il s'est avéré que les stations du GRDC présentaient des lacunes dans leurs données de surveillance, en particulier dans les pays où les données sont peu abondantes. Sur la base de la validation des stations comparables, et des diverses applications réussies du jeu de données WaterGAP dans de nombreux bassins fluviaux à travers le monde, qui comprenaient une validation précise, il a été décidé d'utiliser WaterGAP pour cette analyse.
4 ANALYSE STATISTIQUE

Les indices statistiques basés sur les données hydrométéorologiques sont couramment utilisés pour quantifier les sécheresses sur le paysage pour toute période donnée (Svoboda & Fuchs, 2016) et fournir des représentations numériques de la gravité de la sécheresse. Par conséquent, des analyses statistiques visant à quantifier les caractéristiques des précipitations, du débit et du ruissellement ont été entreprises, et les indices des eaux de surface ont été calculés à travers la SADC, à l'échelle de l'unité de captage, sur la base des données des séries chronologiques de WorldClim et WaterGAP (1960 - 2018) - en moyenne par unité de captage. La méthodologie qui a été suivie pour déterminer les indices statistiques ainsi que la motivation pour utiliser des indices spécifiques comme indicateurs de sécheresse sont discutés dans les sections suivantes.

4.1 Valeurs annuelles moyennes

Les valeurs annuelles moyennes des précipitations, du débit (flux) et du ruissellement, moyennées sur une unité de captage, fournissent une indication des précipitations, du flux, du ruissellement et de la recharge à long terme. La Figure B1, la Figure B2 et la Figure B3 présentent la PAM, le débit annuel moyen et le ruissellement annuel moyen par unité de captage dans la région de la SADC, respectivement. Voir l'annexe B

4.2 Saisonnalité

L'indice de saisonnalité représente la mesure dans laquelle les précipitations et le débit (écoulement) varient entre les saisons d'une année hydrologique (commençant en octobre). Il a été calculé comme la différence entre les valeurs pendant la saison la plus humide (trois mois consécutifs les plus humides / débit le plus élevé), exprimée en pourcentage de la valeur annuelle correspondante des précipitations ou du débit, et la valeur pendant la saison la plus sèche (trois mois consécutifs les plus secs / débit le plus faible), exprimée en pourcentage des valeurs annuelles correspondantes. Un indice de variabilité saisonnière élevé indique que la majeure partie des précipitations ou du débit se produit pendant la saison humide, tandis que le reste de l'année connaît des précipitations ou un débit relativement faibles, ce qui suggère un risque de sécheresse plus élevé. La Figure B4 et la Figure B5 présentent la saisonnalité des précipitations et le débit respectivement. Voir l'annexe B

4.3 Indice de variabilité saisonnière

L'indice de variabilité saisonnière indique l'étendue de la fluctuation intra-annuelle (mois à mois) des précipitations et du débit sur une seule année (Pitman, et al., 2008). Il est calculé en utilisant une méthode de courbe de masse, c'est-à-dire l'écart cumulé de la pluviométrie ou du débit mensuel moyen du calendrier par rapport à la pluviométrie ou au débit mensuel moyen (exprimé en pourcentage MAP). Il a été calculé à l'aide d'une méthode de courbe de masse, comme illustré à la figure 4-1. Plus l'indice de variabilité saisonnière est élevé, plus le risque de sécheresse est important. La Figure B6 et la Figure B7 présentent l'indice de variabilité saisonnière pour les précipitations et le débit respectivement. Voir l'annexe B.
4.4 Coefficient de variation

Le coefficient de variation des précipitations ou du débit annuel moyen fournit un indice du risque climatique, indiquant la probabilité de fluctuations d’une année à l’autre (interannuelles). Plus le coefficient de variation est élevé, plus la variabilité inter-annuelle est importante et plus le risque de sécheresse est grand. La Figure B8 et la Figure B9 présentent le coefficient de variation pour les précipitations et le débit dans la région de la SADC, respectivement. Voir l’annexe B.

4.5 Coefficient de ruissellement

Le coefficient de ruissellement est un facteur sans dimension qui relie la quantité d’eau de surface s’écoulant d’un bassin versant à la quantité de précipitations reçues. Il représente l’effet intégré des pertes du bassin versant et dépend donc de la nature de la surface du terrain, de la pente, du degré de saturation et de l’intensité des précipitations. Un coefficient de ruissellement élevé peut indiquer des zones d’inondation soudaine pendant les orages, car l’eau se déplace rapidement sur terre en direction du canal d’une rivière ou du fond d’une vallée. Le coefficient de ruissellement par unité de bassin versant a été déterminé comme le ruissellement annuel moyen (WaterGAP) exprimé en pourcentage des précipitations annuelles moyennes (WorldClim). La figure B10 présente les coefficients de ruissellement dans la région de la SADC. Voir l’annexe B.
5 NORMALISATION DE L'INDICE

La normalisation des indices a été entreprise pour normaliser les différentes valeurs d'indice à des valeurs comprises entre 0 et 1, et pour permettre la comparaison et l'intégration d'un certain nombre d'indices.

5.1 Méthodes de normalisation

Les techniques de normalisation qui ont été considérées sont définies ci-dessous :

Pourcentage du maximum

\[= \max(\text{mesure du critère pour un Scénario donné}) \]

(1)

Pourcentage de la gamme

\[= \frac{- \min(\text{mesure du critère pour un Scénario donné})}{\max(\text{mesure du critère pour un Scénario donné}) - \min(\text{mesure du critère pour un Scénario donné})} \]

(2)

Vecteur d'unité

\[= \sqrt{\sum(\text{mesure du critère pour un Scénario donné}^2)} \]

(3)

dans laquelle: : la mesure du critère pour un Scénario donné ; et

: la valeur normalisée de.

Il n'existe pas de méthode unique qui puisse s'avérer être l'approche globalement acceptable pour la normalisation. Il faut plutôt évaluer les caractéristiques des différents indicateurs et paramètres et choisir un processus de normalisation qui permette de comparer les différents paramètres à une échelle comparable.

A titre d'orientation générale, les recommandations suivantes sont fournies :

- Si les valeurs normalisées sont censées être comprises entre 0 et 1, utiliser le « pourcentage de la fourchette ».
- Si les valeurs des indicateurs considérés doivent rester constantes dans l'intervalle [0 ; 1], la technique du « vecteur unitaire » doit être utilisée.
- S'il n'y a pas de raison de privilégier l'un ou l'autre, utiliser le « pourcentage du maximum » - c'est la technique la plus couramment utilisée.

5.2 Normalisation des indices statistiques

Les indices des eaux de surface tels que déterminés dans la section 4 sont résumés dans le tableau 5-1, le tableau 5-2 et le tableau 5-3 respectivement. La gamme de valeurs absolues présente la valeur minimale et la valeur maximale de l'indice spécifique relatif aux unités de captage de la SADC. Une direction pour
chaque indice a été sélectionnée en fonction de l’impact de l’indice sur le risque de sécheresse, de sorte que le risque de sécheresse soit maximisé. Le risque de sécheresse maximum est représenté par 1. La méthode de normalisation utilisée pour normaliser chaque indice est également indiquée.
Tableau 5-1 : Normalisation des indices de précipitation

<table>
<thead>
<tr>
<th>Index</th>
<th>Valeur absolue Plage</th>
<th>Direction : Risque de sécheresse</th>
<th>Méthode de normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Précipitations annuelles moyennes</td>
<td>9 mm - 3284 mm</td>
<td>Max comme 0 ; Min comme 1</td>
<td>Pourcentage du maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus les précipitations sont élevées, plus le risque de sécheresse est faible.</td>
<td></td>
</tr>
<tr>
<td>Saisonnalité</td>
<td>CARTE À 11% - CARTE À 86%</td>
<td>Max comme 1, Min comme 0</td>
<td>Pourcentage de la gamme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Un pourcentage inter-saisonnier élevé, le risque de sécheresse plus élevé.</td>
<td></td>
</tr>
<tr>
<td>Indice de variabilité saisonnière</td>
<td>CARTE À 3% - CARTE À 63%</td>
<td>Max comme 1, Min comme 0</td>
<td>Pourcentage de la gamme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus la variation saisonnière est élevée, plus le risque de sécheresse est important.</td>
<td></td>
</tr>
<tr>
<td>Coefficient de variation</td>
<td>1% - 51%</td>
<td>Max comme 1, Min comme 0</td>
<td>Pourcentage de la gamme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus le CoV est élevé, plus la gamme de données par rapport à la moyenne est grande, plus la fluctuation d'une année sur l'autre est élevée, plus le risque de sécheresse est élevé.</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5-2 : Normalisation des indices de décharge

<table>
<thead>
<tr>
<th>Index</th>
<th>Valeur absolue Plage</th>
<th>Direction : Risque de sécheresse</th>
<th>Méthode de normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit annuel moyen</td>
<td>0,2 MCM/an - 1 453 639 MCM/an</td>
<td>Max comme 0 ; Min comme 1</td>
<td>Pourcentage du maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus le débit est élevé, plus le risque de sécheresse est faible.</td>
<td></td>
</tr>
<tr>
<td>Saisonnalité</td>
<td>5% - 95%</td>
<td>Max comme 1, Min comme 0</td>
<td>Pourcentage de la gamme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Un pourcentage inter-saisonnier élevé indique des rivières non pérennes, donc aussi un risque de sécheresse plus élevé.</td>
<td></td>
</tr>
<tr>
<td>Indice de variabilité saisonnière</td>
<td>1% MAR - 65% MAR</td>
<td>Max comme 1, Min comme 0</td>
<td>Pourcentage de la gamme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus la variation saisonnière est élevée, plus le risque de sécheresse est important.</td>
<td></td>
</tr>
<tr>
<td>Coefficient de variation</td>
<td>13% - 582%</td>
<td>Max comme 1, Min comme 0</td>
<td>Pourcentage de la gamme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus le CoV est élevé, plus l'étendue des données par rapport à la moyenne est grande, plus la fluctuation d'une année sur l'autre est élevée, plus le risque de sécheresse est grand.</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5-3 : Normalisation des indices de ruissellement

<table>
<thead>
<tr>
<th>Index</th>
<th>Valeur absolue Plage</th>
<th>Direction : Risque de sécheresse</th>
<th>Méthode de normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Écoulement annuel moyen</td>
<td>0 mm - 2262 mm</td>
<td>Max comme 0 ; Min comme 1</td>
<td>Pourcentage du maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus le ruissellement est élevé, plus le risque de sécheresse est faible.</td>
<td></td>
</tr>
<tr>
<td>Coefficient de ruissellement</td>
<td>0% - 7%</td>
<td>Max comme 0 ; Min comme 1</td>
<td>Pourcentage du maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus le coefficient de ruissellement est élevé, plus le risque de sécheresse est faible</td>
<td></td>
</tr>
</tbody>
</table>
6 PONDÉRATION DES INDICES ET ANALYSE DE SENSIBILITÉ

Une carte de risque des eaux de surface a été produite en superposant/combinant les indices des eaux de surface déterminés pour les précipitations, le débit et le ruissellement. Les différents indices ont été combinés à l'aide d'un algorithme linéaire simple et d'un schéma de pondération associé basé sur l'importance relative des différents indices afin de dériver une carte de risque des eaux de surface spatialement distribuée à travers la région SADC.

Une analyse de sensibilité a été effectuée sur les pondérations afin de déterminer l'impact des différents indices sur l'indice combiné de risque des eaux de surface. L'analyse de sensibilité a impliqué l'étude de cinq scénarios différents. Le scénario 1 était le scénario de contrôle dans lequel tous les indices sont pondérés de manière égale. Les scénarios 2, 3, 4 et 5 ont été établis de façon à ce que tous les indices restent constants, tandis que l'indice étudié a été modifié de façon à ce que l'impact de chaque indice sur l'indice global de risque des eaux de surface puisse être évalué. Les scénarios sont résumés dans le tableau 6-1.

Tableau 6-1 : Analyse de sensibilité

<table>
<thead>
<tr>
<th></th>
<th>Scénario 1</th>
<th>Scénario 2</th>
<th>Scénario 3</th>
<th>Scénario 4</th>
<th>Scénario 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pondération égale</td>
<td>Moyenne</td>
<td>Inter-saisonnalité</td>
<td>Indice de saisonnalité</td>
<td>Coefficient de variation</td>
</tr>
<tr>
<td>Précipitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Précipitations moyennes (mm)</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Inter-saisonnalité</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Indice de saisonnalité</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
</tr>
<tr>
<td>Coefficient de variation (%)</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
</tr>
<tr>
<td>Décharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Débit moyen (mm)</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Inter-saisonnalité</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Indice de saisonnalité</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
<td>Variable</td>
</tr>
<tr>
<td>Coefficient de variation (%)</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
</tr>
<tr>
<td>Ruissellement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruissellement annuel moyen (mm)</td>
<td>Constante</td>
<td>Variable</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Coefficient de ruissellement (%)</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Les résultats de l'analyse de sensibilité sont présentés dans le tableau 6-1. D'après la figure 6-1, il est évident que le changement le plus important du coefficient de risque combiné est le résultat du scénario 2, où les indices moyens sont variés.
Les valeurs moyennes représentent les précipitations, le débit ou le ruissellement absolus, tandis que la saisonnalité, l'indice de variabilité saisonnière, le coefficient de variation et le coefficient de ruissellement représentent des indices sans dimension. L'analyse de sensibilité a confirmé l'importance de ne pas attribuer un poids trop important aux valeurs absolues, car cela pourrait potentiellement fausser l'indice de risque des eaux de surface résultant. Des pondérations ont donc été attribuées aux indices qui mesurent la variabilité inter- et intra-annuelle de telle sorte que leur poids combiné dépasse de manière significative celui des indices de valeur « moyenne ». Le coefficient de variation s'est vu attribuer le poids le plus élevé car il mesure la variabilité interannuelle - un facteur important lorsqu'on considère le risque de sécheresse (Svoboda & Fuchs, 2016). Les pondérations finales des différents indices des eaux de surface sont présentées dans le tableau 6-2 ci-dessous.

<table>
<thead>
<tr>
<th>Tableau 6-2 : Pondération finale des indices des eaux de surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indices des eaux de surface</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Précipitations moyennes (mm)</td>
</tr>
<tr>
<td>Saisonnalité</td>
</tr>
<tr>
<td>Indice de saisonnalité</td>
</tr>
<tr>
<td>Coefficient de variation (%)</td>
</tr>
<tr>
<td>Débit moyen (mm)</td>
</tr>
<tr>
<td>Saisonnalité</td>
</tr>
<tr>
<td>Indice de saisonnalité</td>
</tr>
<tr>
<td>Coefficient de variation (%)</td>
</tr>
<tr>
<td>Ruissellement annuel moyen</td>
</tr>
<tr>
<td>(mm)</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
7 CARTE FINALE DES RISQUES

7.1 Carte finale des risques liés aux eaux de surface

La carte finale des risques liés aux eaux de surface est présentée dans la Figure 7-1. Les données sur le débit et le ruissellement n'étaient pas disponibles pour certains des États insulaires. Les données pluviométriques disponibles ont été utilisées pour calculer les indices pluviométriques et dériver un indice de risque pour les eaux de surface pour les États insulaires.
Figure 7-1 : Carte des risques liés aux eaux de surface
7.2 Validation de la carte des risques liés aux eaux de surface

La carte de risque des eaux de surface (Figure 7-1) met en évidence les zones de la région SADC où les conditions de sécheresse des eaux de surface sont prévalentes. Un processus de validation qualitative est suivi où les zones géographiques exposées à des sécheresses plus fréquentes sont identifiées en utilisant un certain nombre de cartes de sécheresse dérivées existantes ainsi que des rapports sur les sécheresses dans toute l’Afrique australe.

Selon la Figure 7-1, les zones de sécheresse grave des eaux de surface comprennent : le sud-ouest et le centre de la Namibie, la majeure partie du Botswana, le sud-ouest du Zimbabwe, le nord de l’Afrique du Sud ainsi que le sud de l’Angola, le sud de la Zambie, le sud du Mozambique ainsi que le centre de la Tanzanie et le sud-ouest de Madagascar.

de sécheresse par le Centre de services climatiques de la SADC (2018/2019), concordent avec les zones de sécheresse identifiées de la carte des risques de sécheresse des eaux de surface (Figure 7-1).

Le réseau du système d’alerte précoce à la famine ainsi que l’U.S. Geological Survey ont été utilisés pour identifier et surveiller les zones à risque de sécheresse en février 2019. La figure 7-3 représente les anomalies d’humidité du sol en février 2019. Les zones présentant plus (vert) ou moins (rouge) d’eau dans les couches supérieures du sol que la norme pour le mois (Stevens & Hansen, 2019). La Namibie et le sud de l’Angola et le sud de la Zambie, le nord du Botswana et le nord du Zimbabwe ainsi que l'ouest de Madagascar présentent des sols particulièrement secs. Les zones mises en évidence par l'humidité sèche des sols mettent en évidence les mêmes régions que celles identifiées par la carte des risques liés aux eaux de surface (Figure 7-1).

8 CONCLUSION ET VOIE À SUIVRE

L’évaluation des ressources en eau de surface fait appel à des ensembles de données hydrologiques mondiales librement disponibles et accessibles, plus précisément le débit et le ruissellement de WaterGAP v2.2 (Döll et al. 2003), et les précipitations de WorldClim v2.1 (WorldClim, 2020). Ces ensembles de données mondiales font partie du compendium HydroATLAS du WWF. Ces ensembles de données globales ont été validés par rapport aux données de décharge ponctuelle, de ruissellement et de précipitations du GRDC et de la NOAA respectivement, et montrent un bon niveau d’intégrité des données. Un ensemble d’indices statistiques a ensuite été calculé en utilisant les données de séries temporelles disponibles pour chaque unité de captage, y compris le MAP, l’indice de saisonnalité, le coefficient de variation et l’indice de sécheresse pour les précipitations et le MAR, l’indice de saisonnalité, le coefficient de variation ainsi que l’indice de sécheresse pour le ruissellement. Enfin, ces indices ont été normalisés et combinés pour développer une carte intégrée du risque pour les eaux de surface. Cette carte de risque des eaux de surface sera superposée avec la carte révisée de risque de sécheresse des eaux souterraines (livrable 3 de ce projet) et la carte des zones prioritaires de vulnérabilité de la population (livrable 4 de ce projet) pour produire une carte finale des points chauds. Cette carte des points chauds sera utilisée pour localiser les zones nécessitant des interventions de haut niveau en matière d’approvisionnement en eau, qu’il s’agisse d’eau souterraine ou d’eau de surface (livrable 5 de ce projet). Les cartes des eaux de surface et des précipitations qui ont été produites dans ce rapport serviront de base pour identifier les interventions les plus appropriées en matière d’eau de surface pour les zones sensibles.
9 RÉFÉRENCES

Linke, S. et al., 2016. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. *Proceedings of the International Association of Hydrological Sciences*, Volume 374, pp. 29-34.

ANNEXE A : MÉTADONNÉES POUR LES SOURCES SANS CARTE

Tableau A1 : Ensembles de données sur les précipitations et sources

<table>
<thead>
<tr>
<th>Ensemble de données</th>
<th>Source :</th>
<th>URL de la source</th>
<th>URL des métadonnées originales</th>
<th>Licence</th>
<th>Type de données (raster ou vecteur)</th>
<th>Grade</th>
<th>Fréquence ou série chronologique</th>
<th>Date de création</th>
<th>Période de collecte des données</th>
<th>Géographique - Couvertures géographique</th>
<th>Autres commentaires sur l'utilisation, les limites et le traitement des données</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIRPS</td>
<td></td>
<td>https://data.chc.ucsb.edu/products/CHIRPS-2.0/</td>
<td>https://data.chc.ucsb.edu/products/CHIRPS-2.0/</td>
<td>Aucune</td>
<td>Rastar</td>
<td>0,05 x 0,05</td>
<td>Journalière, pentadique et mensuelle</td>
<td>1981-2018</td>
<td>quasi-global (50°S-50°N)</td>
<td>Précédemment utilisé dans les régions de la SADC</td>
<td></td>
</tr>
<tr>
<td>CRU</td>
<td>Le CRU de l'Université de East Anglia</td>
<td>http://www.cru.uea.ac.uk/</td>
<td>http://www.cru.uea.ac.uk/data</td>
<td>Aucune</td>
<td>Raster</td>
<td>0,5x0,5</td>
<td>mensuelle</td>
<td>1901-2015</td>
<td>Monde</td>
<td>Utilisé pour l'analyse des tendances mondiales et</td>
<td></td>
</tr>
<tr>
<td>GMI-GDRI : Évaluation de la disponibilité en eau de</td>
<td>Vers 30</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Tableau A2 : Ensembles de données et sources sur le ruissellement et les rejets

<table>
<thead>
<tr>
<th>Ensemble de données</th>
<th>Source :</th>
<th>URL de la source</th>
<th>URL des métadonnées originales</th>
<th>Licence</th>
<th>Type de données (raster ou vecteur)</th>
<th>Grade</th>
<th>Fréquence ou série chronologique</th>
<th>Date de création</th>
<th>Période de collecte des données</th>
<th>Couverture géographique</th>
<th>Autres commentaires sur l'utilisation, les limites et le traitement des données Traitement effectué</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRDC</td>
<td>GRDC</td>
<td>https://www.bafg.de/GRDC/FR/01_GRDC/grdc_node.html</td>
<td>Demande à l'adresse grdc@bafg.de</td>
<td>Aucune</td>
<td>Vecteur / point</td>
<td>Journalier, mensuel</td>
<td>1988</td>
<td>1901 à proche du courant</td>
<td>Monde</td>
<td>Disparue en Afrique centrale et du Nord</td>
<td></td>
</tr>
<tr>
<td>SA FRIEND</td>
<td>GRDC</td>
<td>https://www.bafg.de/GRC/EN/04_spcldtbss/45_SAFL/saflow_node.html</td>
<td>Demande à l'adresse grdc@bafg.de</td>
<td>Aucune</td>
<td>Vecteur / point</td>
<td>Journalier, mensuel</td>
<td>1988</td>
<td>1901 à proche du courant</td>
<td>Fait partie de la région SADC</td>
<td>Disparue en Afrique centrale et du Nord</td>
<td></td>
</tr>
<tr>
<td>GRUN</td>
<td>GRDC</td>
<td>https://figshare.com/articles/GRUN_Global_Runoff_Reconstruction/9228176</td>
<td></td>
<td>Aucune</td>
<td>Grille matricielle</td>
<td>0,5</td>
<td>Toutes les 3 heures</td>
<td>1901-2014</td>
<td>Monde</td>
<td>Couverture des données relativement bonne sur la SADC</td>
<td></td>
</tr>
<tr>
<td>WaterGAP v2.2</td>
<td>HydroS</td>
<td>https://www.hydros.hedz.org/page/hydroatlas</td>
<td></td>
<td></td>
<td>Creative Commons CC-BY 4,0</td>
<td>Grille matricielle</td>
<td>0,25</td>
<td>Moyenn e mensuel</td>
<td>1971-2000</td>
<td>Monde</td>
<td>Période de données limitée disponible et pas de mise à jour récente</td>
</tr>
<tr>
<td></td>
<td>WaterGAP v2.2</td>
<td>https://www.hydros.hedz.org/images/inpages/BA sinATLAS_Catalo g_v10.pdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE B : INDICES STATISTIQUES

B1 : Valeurs annuelles moyennes

Figure B1: Précipitations annuelles moyennes (mm)
Figure B2: Débit annuel moyen (millions de mètres cubes par an)
Figure B3: Ruissellement annuel moyen (mm)
B2 : Saisonnalité

Figure B4: Saisonnalité des précipitations
Figure B5: Saisonnalité du débit
B3 : Indice de variabilité saisonnière

Figure B6: Indice de variabilité saisonnière des précipitations
Figure B7: Indice de saisonnalité du débit
B4 : Coefficient de variation

Figure B8: Coefficient de variation des précipitations
Figure B9: Coefficient de variabilité du débit

Coefficient of Variation (%)

- 13 - 33
- 33 - 51
- 51 - 75
- 75 - 104
- 104 - 138
- 138 - 176
- 176 - 225
- 225 - 287
- 287 - 398
- 398 - 582
B5 : Coefficient de ruissellement

Figure B10: Coefficient de ruissellement en pourcentage du PAM